484 resultados para science learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. © 2010 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most standard algorithms for prediction with expert advice depend on a parameter called the learning rate. This learning rate needs to be large enough to fit the data well, but small enough to prevent overfitting. For the exponential weights algorithm, a sequence of prior work has established theoretical guarantees for higher and higher data-dependent tunings of the learning rate, which allow for increasingly aggressive learning. But in practice such theoretical tunings often still perform worse (as measured by their regret) than ad hoc tuning with an even higher learning rate. To close the gap between theory and practice we introduce an approach to learn the learning rate. Up to a factor that is at most (poly)logarithmic in the number of experts and the inverse of the learning rate, our method performs as well as if we would know the empirically best learning rate from a large range that includes both conservative small values and values that are much higher than those for which formal guarantees were previously available. Our method employs a grid of learning rates, yet runs in linear time regardless of the size of the grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"The Latin meaning of the word “curriculum” as the race course for athletic sports is a good place to start to describe the use of this word in science education. It conjures up senses of contest and of challenge that have been part of the science curriculum since its earliest beginnings in schooling. Curriculum also had a Latin meaning associating it with the “deeds and events for developing a child to an adult” that also finds resonance in how the teaching and learning of science has in some places and some occasions been conceived. It is this sense of the prescription of an intended curriculum – what is to be taught and learnt in science – that this entry discusses the science curriculum’s movement over time. Others in education, and indeed in science education, use the word “curriculum” much more widely to include the pedagogies in classroom practice, the many other explicit and implicit experiences that ..."--Publisher website

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the detection and prediction of rain in environmental recordings using different machine learning algorithms. The results obtained in this research will help ecologists to efficiently analyse environmental data and monitor biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose This study explores the informed learning experiences of early career academics while building their networks for professional and personal development. The notion that information and learning are inextricably linked via the concept of ‘informed learning’ is used as a conceptual framework to gain a clearer picture of what informs early career academics while they learn and how they experience using that which informs their learning within this complex practice: to build, maintain and utilise their developmental networks. Methodology This research employs a qualitative framework using a constructivist grounded theory approach (Charmaz, 2006). Through semi-structured interviews with a sample of fourteen early career academics from across two Australian universities, data were generated to investigate the research questions. The study used the methods of constant comparison to create codes and categories towards theme development. Further examination considered the relationship between thematic categories to construct an original theoretical model. Findings The model presented is a ‘knowledge ecosystem’, which represents the core informed learning experience. The model consists of informal learning interactions such as relating to information to create knowledge and engaging in mutually supportive relationships with a variety of knowledge resources found in people who assist in early career development. Originality/Value Findings from this study present an alternative interpretation of informed learning that is focused on processes manifesting as human interactions with informing entities revolving around the contexts of reciprocal human relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discounted Cumulative Gain (DCG) is a well-known ranking evaluation measure for models built with multiple relevance graded data. By handling tagging data used in recommendation systems as an ordinal relevance set of {negative,null,positive}, we propose to build a DCG based recommendation model. We present an efficient and novel learning-to-rank method by optimizing DCG for a recommendation model using the tagging data interpretation scheme. Evaluating the proposed method on real-world datasets, we demonstrate that the method is scalable and outperforms the benchmarking methods by generating a quality top-N item recommendation list.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details the development of an online adaptive control system, designed to learn from the actions of an instructing pilot. Three learning architectures, single layer neural networks (SLNN), multi-layer neural networks (MLNN), and fuzzy associative memories (FAM) are considerd. Each method has been tested in simulation. While the SLNN and MLNN provided adequate control under some simulation conditions, the addition of pilot noise and pilot variation during simulation training caused these methods to fail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the effects of PLM and BIM on professional practice. It draws on existing literature documenting the experiences of both communities of practice to explain shifts in professional boundaries. A review of case study based literature compares the nature of changes triggered by PLM and BIM relative to the new activities, roles/responsibilities and knowledge competencies, and supply chain relationships. The paper synthesises these changes and reflects PLM and BIM experiences against each other so as to contrast the continuing evolution of professional practice and lessons learned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advancement of technology and the internet have created global collaborative learning opportunities and changed learning and teaching in any discipline around the world, including in developing countries. The availability of web-based resources and high-speed internet infrastructure has extended the opportunities to conduct blended learning and new ways of distance learning beyond virtual class room webinars. The aim of this exploratory paper is to review the challenges and opportunities for increasing student engagement in virtual learning. A reflective analysis of international collaborative learning case studies, published articles and practices in virtual learning is used to explore the extension of blended learning organised and participated by institutions from multiple countries. The lessons learnt from flexible learning delivery in professional practice courses in Property Education are used to evaluate potential extensions of blended learning implementation in a global context.