543 resultados para real world context
Resumo:
Located in the Gulf of Mexico in nearly 8,000 ft of water, the Perdido project is the deepest spar application to date in the world and Shell’s first fully integrated application of its inhouse digital oilfield technology— called “Smart Field”—in the Western hemisphere. Developed by Shell on behalf of partners BP and Chevron, the spar and the subsea equipment connected to it will eventually capture about an order of magnitude more data than is collected from any other Shelldesigned and -managed development operating in the Gulf of Mexico. This article describes Shell’s digital oilfield design philosophy, briefly explains the five design elements that underpin “smartness” in Shell’s North and South American operations and sheds light on the process by which a highly customized digital oilfield development and management plan was put together for Perdido. Although Perdido is the first instance in North and South America in which these design elements and processes were applied in an integrated way, all of Shell’s future new developments in the Western hemisphere are expected to follow the same overarching design principles. Accordingly, this article uses Perdido as a real-world example to outline the high-level details of Shell’s digital oilfield design philosophy and processes.
Resumo:
This thesis presents a novel approach to mobile robot navigation using visual information towards the goal of long-term autonomy. A novel concept of a continuous appearance-based trajectory is proposed in order to solve the limitations of previous robot navigation systems, and two new algorithms for mobile robots, CAT-SLAM and CAT-Graph, are presented and evaluated. These algorithms yield performance exceeding state-of-the-art methods on public benchmark datasets and large-scale real-world environments, and will help enable widespread use of mobile robots in everyday applications.
Resumo:
As the systematic investigation of Twitter as a communications platform continues, the question of developing reliable comparative metrics for the evaluation of public, communicative phenomena on Twitter becomes paramount. What is necessary here is the establishment of an accepted standard for the quantitative description of user activities on Twitter. This needs to be flexible enough in order to be applied to a wide range of communicative situations, such as the evaluation of individual users’ and groups of users’ Twitter communication strategies, the examination of communicative patterns within hashtags and other identifiable ad hoc publics on Twitter (Bruns & Burgess, 2011), and even the analysis of very large datasets of everyday interactions on the platform. By providing a framework for quantitative analysis on Twitter communication, researchers in different areas (e.g., communication studies, sociology, information systems) are enabled to adapt methodological approaches and to conduct analyses on their own. Besides general findings about communication structure on Twitter, large amounts of data might be used to better understand issues or events retrospectively, detect issues or events in an early stage, or even to predict certain real-world developments (e.g., election results; cf. Tumasjan, Sprenger, Sandner, & Welpe, 2010, for an early attempt to do so).
Resumo:
This paper presents a system which enhances the capabilities of a light general aviation aircraft to land autonomously in case of an unscheduled event such as engine failure. The proposed system will not only increase the level of autonomy for the general aviation aircraft industry but also increase the level of dependability. Safe autonomous landing in case of an engine failure with a certain level of reliability is the primary focus of our work as both safety and reliability are attributes of dependability. The system is designed for a light general aviation aircraft but can be extended for dependable unmanned aircraft systems. The underlying system components are computationally efficient and provides continuous situation assessment in case of an emergency landing. The proposed system is undergoing an evaluation phase using an experimental platform (Cessna 172R) in real world scenarios.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions
Resumo:
Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
This practice-led research project investigates how new postcolonial conditions require new methods of critique to fully engage with the nuances of real world, 'lived' experiences. Framed by key aspects of postcolonial theory, this project examines contemporary artists' contributions to investigations of identity, race, ethnicity, otherness and diaspora, as well as questions of locality, nationality, and transnationality. Approaching these issues through the lens of my own experience as an artist and subject, it results in a body of creative work and a written exegesis that creatively and critically examine the complexities, ambiguities and ambivalences of the contemporary postcolonial condition.
Resumo:
Two key elements of education for sustainability (EfS) are action-competence, and the importance of place and experiencing the natural world. These elements emphasise and depend on the relationship between learners and their real world contexts, and have been incorporated to some extent into the sustainability cross-curricular perspective of the new Australian curriculum. Given the importance of real-world experiential learning in EfS, what is to be made of the use of multi-user virtual worlds in EfS? We went with our preservice secondary science teachers to the very appealing virtual world Quest Atlantis, which we are using in this paper as an example to explore the value of virtual worlds in EfS. In assessing the virtual world of Quest Atlantis against Australia’s Sustainability Curriculum Framework, many areas of coherence are evident relating to world viewing, systems thinking and futures thinking, knowledge of ecological and human systems, and implementing and reflecting on the consequences of actions. The power and appeal of these virtual experiences in developing these knowledges is undeniable. However there is some incoherence between the elements of EfS as expressed in the Sustainability Curriculum Framework and the experience of QA where learners are not acting in their real world, or developing connection with real place. This analysis highlights both the value and some limitations of virtual worlds as a venue for EfS.
Resumo:
Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.
Resumo:
Many emerging economies are dangling the patent system to stimulate bio-technological innovations with the ultimate premise that these will improve their economic and social growth. The patent system mandates full disclosure of the patented invention in exchange of a temporary exclusive patent right. Recently, however, patent offices have fallen short of complying with such a mandate, especially for genetic inventions. Most patent offices provide only static information about disclosed patent sequences and even some do not keep track of the sequence listing data in their own database. The successful partnership of QUT Library and Cambia exemplifies advocacy in Open Access, Open Innovation and User Participation. The library extends its services to various departments within the university, builds and encourages research networks to complement skills needed to make a contribution in the real world.
Resumo:
Several websites utilise a rule-base recommendation system, which generates choices based on a series of questionnaires, for recommending products to users. This approach has a high risk of customer attrition and the bottleneck is the questionnaire set. If the questioning process is too long, complex or tedious; users are most likely to quit the questionnaire before a product is recommended to them. If the questioning process is short; the user intensions cannot be gathered. The commonly used feature selection methods do not provide a satisfactory solution. We propose a novel process combining clustering, decisions tree and association rule mining for a group-oriented question reduction process. The question set is reduced according to common properties that are shared by a specific group of users. When applied on a real-world website, the proposed combined method outperforms the methods where the reduction of question is done only by using association rule mining or only by observing distribution within the group.