445 resultados para Structural Determination
Resumo:
The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.
Resumo:
Studies of cerebral asymmetry can open doors to understanding the functional specialization of each brain hemisphere, and how this is altered in disease. Here we examined hemispheric asymmetries in fiber architecture using diffusion tensor imaging (DTI) in 100 subjects, using high-dimensional fluid warping to disentangle shape differences from measures sensitive to myelination. Confounding effects of purely structural asymmetries were reduced by using co-registered structural images to fluidly warp 3D maps of fiber characteristics (fractional and geodesic anisotropy) to a structurally symmetric minimal deformation template (MDT). We performed a quantitative genetic analysis on 100 subjects to determine whether the sources of the remaining signal asymmetries were primarily genetic or environmental. A twin design was used to identify the heritable features of fiber asymmetry in various regions of interest, to further assist in the discovery of genes influencing brain micro-architecture and brain lateralization. Genetic influences and left/right asymmetries were detected in the fiber architecture of the frontal lobes, with minor differences depending on the choice of registration template.
Resumo:
To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.
Resumo:
This paper presents the results of a research project aimed at examining the capabilities and challenges of two distinct but not mutually exclusive approaches to in-service bridge assessment: visual inspection and installed monitoring systems. In this study, the intended functionality of both approaches was evaluated on its ability to identify potential structural damage and to provide decision-making support. Inspection and monitoring are compared in terms of their functional performance, cost, and barriers (real and perceived) to implementation. Both methods have strengths and weaknesses across the metrics analyzed, and it is likely that a hybrid evaluation technique that adopts both approaches will optimize efficiency of condition assessment and ultimately lead to better decision making.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Application of "advanced analysis" methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A concentrated plasticity formulation suitable for practical advanced analysis of steel frame structures comprising non-compact sections is presented in this paper. This formulation, referred to as the refined plastic hinge method, implicitly accounts for the effects of gradual cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses, and local buckling.
Resumo:
This article reports the main features of an innovative full-scale Structural Health Monitoring (SHM) system which has been implemented onto a landmark building on QUT Gardens Point Campus and its efficacy in capturing the recent Queensland earthquakes although they occurred almost 300 km away from where the system is located.
Resumo:
This paper investigates the influence of structural sealant joints on the blast performance of laminated glass (LG) panels, using a comprehensive numerical procedure. A parametric study was carried out by varying the width, thickness and the Young’s modulus (E) of the structural silicone sealant joints and the behavior of the LG panel was studied under two different blast loads. Results show that these parameters influence the blast response of LG panels, especially under the higher blast load. Sealant joints that are thicker, have smaller widths and lower E values increase the flexibility at the supports and hence increase the energy absorption of the LG panel while reducing the support reactions. Results also confirmed that sealant joints designed according to current standards perform well under blast loads. Modeling techniques presented in this paper could be used to complement and supplement the guidance in existing design standards. The new information generated in this paper will contribute towards safer and more economical designs of entire facade systems including window glazing, frames and supporting structures.
Resumo:
Background Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. Methods We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Results Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference equal to .408, p less than .001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. Conclusions This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.
Resumo:
A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component–artificial networks (PC–ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC–ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.
Resumo:
It is difficult to determine sulfur-containing volatile organic compounds in the atmosphere because of their reactivity. Primary off-line techniques may suffer losses of analytes during the transportation from field to laboratory and sample preparation. In this study, a novel method was developed to directly measure dimethyl sulfide at parts-per-billion concentration levels in the atmosphere using vacuum ultraviolet single photon ionization time-of-flight mass spectrometry. This technique offers continuous sampling at a response rate of one measurement per second, or cumulative measurements over longer time periods. Laboratory prepared samples of different concentrations of dimethyl sulfide in pure nitrogen gas were analyzed at several sampling frequencies. Good precision was achieved using sampling periods of at least 60 seconds with a relative standard deviation of less than 25%. The detection limit for dimethyl sulfide was below the 3 ppb olfactory threshold. These results demonstrate that single photon ionization time-of-flight mass spectrometry is a valuable tool for rapid, real-time measurements of sulfur-containing organic compounds in the air.
Resumo:
Impulse propagation in biological tissues is known to be modulated by structural heterogeneity. In cardiac muscle, improved understanding on how this heterogeneity influences electrical spread is key to advancing our interpretation of dispersion of repolarization. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a means of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, analysed against in vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies relevant characteristics of cardiac electrical propagation at tissue level. These include conduction effects on action potential (AP) morphology, the shortening of AP duration along the activation pathway and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media.
Resumo:
BACKGROUND Many patients presenting to the emergency department (ED) for assessment of possible acute coronary syndrome (ACS) have low cardiac troponin concentrations that change very little on repeat blood draw. It is unclear if a lack of change in cardiac troponin concentration can be used to identify acutely presenting patients at low risk of ACS. METHODS We used the hs-cTnI assay from Abbott Diagnostics, which can detect cTnI in the blood of nearly all people. We identified a population of ED patients being assessed for ACS with repeat cTnI measurement who ultimately were proven to have no acute cardiac disease at the time of presentation. We used data from the repeat sampling to calculate total within-person CV (CV(T)) and, knowing the assay analytical CV (CV(A)), we could calculate within-person biological variation (CV(i)), reference change values (RCVs), and absolute RCV delta cTnI concentrations. RESULTS We had data sets on 283 patients. Men and women had similar CV(i) values of approximately 14%, which was similar at all concentrations <40 ng/L. The biological variation was not dependent on the time interval between sample collections (t = 1.5-17 h). The absolute delta critical reference change value was similar no matter what the initial cTnI concentration was. More than 90% of subjects had a critical reference change value <5 ng/L, and 97% had values of <10 ng/L. CONCLUSIONS With this hs-cTnI assay, delta cTnI seems to be a useful tool for rapidly identifying ED patients at low risk for possible ACS.
Resumo:
Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.
Resumo:
A simple, inexpensive and sensitive kinetic spectrophotometric method was developed for the simultaneous determination of three anti-carcinogenic flavonoids: catechin, quercetin and naringenin, in fruit samples. A yellow chelate product was produced in the presence neocuproine and Cu(I) – a reduction product of the reaction between the flavonoids with Cu(II), and this enabled the quantitative measurements with UV–vis spectrophotometry. The overlapping spectra obtained, were resolved with chemometrics calibration models, and the best performing method was the fast independent component analysis (fast-ICA/PCR (Principal component regression)); the limits of detection were 0.075, 0.057 and 0.063 mg L−1 for catechin, quercetin and naringenin, respectively. The novel method was found to outperform significantly the common HPLC procedure.