522 resultados para Individual bedload transport event
Resumo:
Background: There is currently no early predictive marker of survival for patients receiving chemotherapy for malignant pleural mesothelioma (MPM). Tumour response may be predictive for overall survival (OS), though this has not been explored. We have thus undertaken a combined-analysis of OS, from a 42 day landmark, of 526 patients receiving systemic therapy for MPM. We also validate published progression-free survival rates (PFSRs) and a progression-free survival (PFS) prognostic-index model. Methods: Analyses included nine MPM clinical trials incorporating six European Organisation for Research and Treatment of Cancer (EORTC) studies. Analysis of OS from landmark (from day 42 post-treatment) was considered regarding tumour response. PFSR analysis data included six non-EORTC MPM clinical trials. Prognostic index validation was performed on one non-EORTC data-set, with available survival data. Results: Median OS, from landmark, of patients with partial response (PR) was 12·8 months, stable disease (SD), 9·4 months and progressive disease (PD), 3·4 months. Both PR and SD were associated with longer OS from landmark compared with disease progression (both p < 0·0001). PFSRs for platinum-based combination therapies were consistent with published significant clinical activity ranges. Effective separation between PFS and OS curves provided a validation of the EORTC prognostic model, based on histology, stage and performance status. Conclusion: Response to chemotherapy is associated with significantly longer OS from landmark in patients with MPM. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Using the belief basis of the theory of planned behavior (TPB), the current study explored the rate of mild reactions reported by donors in relation to their first donation and the intention and beliefs of those donors with regard to returning to donate again. A high proportion of first-time donors indicated that they had experienced a reaction to blood donation. Further, donors who reacted were less likely to intend to return to donate. Regression analyses suggested that targeting different beliefs for those donors who had and had not reacted would yield most benefit in bolstering donors’ intentions to remain donating. The findings provide insight into those messages that could be communicated via the mass media or in targeted communications to retain first-time donors who have experienced a mild vasovagal reaction.
Resumo:
An experiment in large scale, live, game design and public performance, bringing together participants from across the creative arts to design, deliver and document a project that was both a cooperative learning experience and an experimental public performance. The four month project, funded by the Edge Digital Centre, culminated into a 24 hour ARG event involving over 100 participants in December 2012. Using the premise of a viral outbreak, young enthusiasts auditioned for the roles of Survivor, Zombie, Medic and Military. The main objective was for the Survivors to complete a series of challenges over 24 hours, while the other characters fulfilled their opposing objectives of interference and sabotage supported by both scripted and free-form scenarios staged in constructed scenes throughout the venues. The event was set in the State Library of Queensland and the Edge Digital Centre who granted the project full access, night and day to all areas including public, office and underground areas. These venues were transformed into cinematic settings full of interactive props and various audio-visual effects. The ZomPoc Project was an innovative experiment in writing and directing a large scale, live, public performance, bringing together participants from across the creative industries. In order to design such an event a number of innovative resources were developed exploiting techniques of game design, theatre, film, television and tangible media production. A series of workshops invited local artists, scientists, technicians and engineers to find new ways of collaborating to create networked artifacts, experimental digital works, robotic props, modular set designs, sound effects and unique costuming guided by an innovative multi-platform script developed by Deb Polson. The result of this collaboration was the creation of innovative game and set props, both atmospheric and interactive. Such works animated the space, presented story clues and facilitated interactions between strangers who found themselves sharing a unique experience in unexpected places.
Resumo:
A fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBFs) to discretize the space variable. In contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example which is presented to describe a fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating fractional differential equations, and it has good potential in the development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
Besides responding to challenges of rapid urbanization and growing traffic congestion, the development of smart transport systems has attracted much attention in recent times. Many promising initiatives have emerged over the years. Despite these initiatives, there is still a lack of understanding about an appropriate definition of smart transport system. As such, it is challenging to identify the appropriate indicators of ‘smartness’. This paper proposes a comprehensive and practical framework to benchmark cities according to the smartness in their transportation systems. The proposed methodology was illustrated using a set of data collected from 26 cities across the world through web search and contacting relevant transport authorities and agencies. Results showed that London, Seattle and Sydney were among the world’s top smart transport cities. In particular, Seattle and Paris ranked high in smart private transport services while London and Singapore scored high on public transport services. London also appeared to be the smartest in terms of emergency transport services. The key value of the proposed innovative framework lies in a comparative analysis among cities, facilitating city-to-city learning.
Resumo:
Due to the critical shortage and continued need of blood and organ donations (ODs), research exploring similarities and differences in the motivational determinants of these behaviors is needed. In a sample of 258 university students, we used a cross-sectional design to test the utility of an extended theory of planned behavior (TPB) including moral norm, self-identity and in-group altruism (family/close friends and ethnic group), to predict people’s blood and OD intentions. Overall, the extended TPB explained 77.0% and 74.6% of variance in blood and OD intentions, respectively. In regression analyses, common contributors to intentions across donation contexts were attitude, self-efficacy and self-identity. Normative influences varied with subjective norm as a significant predictor related to OD intentions but not blood donation intentions at the final step of regression analyses. Moral norm did not contribute significantly to blood or OD intentions. In-group altruism (family/close friends) was significantly related to OD intentions only in regressions. Future donation strategies should increase confidence to donate, foster a perception of self as the type of person who donates blood and/or organs, and address preferences to donate organs to in-group members only.
Resumo:
The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
Achieving sustainable urban development is identified as one ultimate goal of many contemporary planning endeavours and has become central to formulation of urban planning policies. Within this concept, land-use and transport integration is highlighted as one of the most important and attainable policy objectives. In many cities, integration is embraced as an integral part of local development plans, and a number of key integration principles are identified. However, the lack of available evaluation methods to measure extent of urban sustainability levels prevents successful implementation of these principles. This paper introduces a new indicator-based spatial composite indexing model developed to measure sustainability performance of urban settings by taking into account land-use and transport integration principles. Model indicators are chosen via a thorough selection process in line with key principles of land-use and transport integration. These indicators are grouped into categories and themes according to their topical relevance. These indicators are then aggregated to form a spatial composite index to portray an overview of the sustainability performance of the pilot study area used for model demonstration. The study results revealed that the model is a practical instrument for evaluating success of local integration policies and visualizing sustainability performance of built environments and useful in both identifying problematic areas as well as formulating policy interventions.
Resumo:
A key challenge for the 21st Century is to make our cities more liveable and foster economically sustainable, environmentally responsible, and socially inclusive communities. Design thinking, particularly a human-centred approach, offers a way to tackle this challenge. Findings from two recent Australian research projects highlight how facilitating sustainable, liveable communities in a humid sub-tropical environment requires an in-depth understanding of people’s perspectives, experiences and practices. Project 1 (‘Research House’) documents the reflections of a family who lived in a ‘test’ sustainable house for two years, outlining their experience and evaluations of universal design and sustainable technologies. The study family was very impressed with the natural lighting, natural ventilation, spaciousness and ease of access, which contributed significantly to their comfort and the liveability of their home. Project 2 (‘Inner-Urban High Density Living’) explored Brisbane residents’ opinions about high-density living, through a survey (n=636), interviews (n=24), site observations (over 300 hours) and environmental monitoring, assessing opinions on the liveability of their individual dwelling, the multi-unit host building and the surrounding neighbourhood. Nine areas, categorised into three general domains, were identified as essential for enhancing high density liveability. In terms of the dwelling, thermal comfort/ventilation, natural light, noise mitigation were important; shared space, good neighbour protocols, and support for environmentally sustainable behaviour were desired in the building/complex; and accessible/sustainable transport, amenities and services, sense of community were considered important in the surrounding neighbourhood. Combined, these findings emphasise the importance and complexity associated with designing liveable building, cities and communities, illustrating how adopting a design thinking, human-centred approach will help create sustainable communities that will meet the needs of current and future generations.
Resumo:
The Bluetooth technology is being increasingly used, among the Automated Vehicle Identification Systems, to retrieve important information about urban networks. Because the movement of Bluetooth-equipped vehicles can be monitored, throughout the network of Bluetooth sensors, this technology represents an effective means to acquire accurate time dependant Origin Destination information. In order to obtain reliable estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. Some of the main challenges inherent to Bluetooth data are, first, that Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be estimated. Second, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold: to give an overview of the issues inherent to the Bluetooth technology, through the analysis of the data available from the Bluetooth sensors in Brisbane; and to propose a method for retrieving the itineraries of the individual Bluetooth vehicles. We argue that estimating these latent itineraries, accurately, is a crucial step toward the retrieval of accurate dynamic Origin Destination Matrices.
Resumo:
Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users to provide customized information and services. The Smart Card (SC) data, from Automated Fare Collection system, facilitates the understanding of multiday travel regularity of transit passengers, and can be used to segment them into identifiable classes of similar behaviors and needs. However, the use of SC data for market segmentation has attracted very limited attention in the literature. This paper proposes a novel methodology for mining spatial and temporal travel regularity from each individual passenger’s historical SC transactions and segments them into four segments of transit users. After reconstructing the travel itineraries from historical SC transactions, the paper adopts the Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm to mine travel regularity of each SC user. The travel regularity is then used to segment SC users by an a priori market segmentation approach. The methodology proposed in this paper assists transit operators to understand their passengers and provide them oriented information and services.