696 resultados para Engineering, Industrial|Engineering, System Science|Operations Research
Resumo:
This paper proposes a self-tuning feedforward active noise control (ANC) system with online secondary path modeling. The step-size parameters of the controller and modeling filters have crucial rule on the system performance. In literature, these parameters are adjusted by trial-and-error. In other words, they are manually initialized before system starting, which require performing extensive experiments to ensure the convergence of the system. Hence there is no guarantee that the system could perform well under different situations. In the proposed method, the appropriate values for the step-sizes are obtained automatically. Computer simulation results indicate the effectiveness of the proposed method.
Resumo:
An increased interest in utilising groups of Unmanned Aerial Vehicles (UAVs) with heterogeneous capabilities and autonomy is presenting the challenge to effectively manage such during missions and operations. This has been the focus of research in recent years, moving from a traditional UAV management paradigm of n-to-1 (n operators for one UAV, with n being at least two operators) toward 1-to-n (one operator, multiple UAVs). This paper has expanded on the authors’ previous work on UAV functional capability framework, by incorporating the concept of Functional Level of Autonomy (F-LOA) with two configurations: The lower F-LOA configuration contains sufficient information for the operator to generate solutions and make decisions to address perturbation events. Alternatively, the higher F-LOA configuration presents information reflecting on the F-LOA of the UAV, allowing the operator to interpret solutions and decisions generated autonomously, and decide whether to veto from this decision.
Traffic queue estimation for metered motorway on-ramps through use of loop detector time occupancies
Resumo:
The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is a vital input for dynamic queue management on metered on-ramps. Accurate and reliable queue information enables the management of on-ramp queue in an adaptive manner to the actual traffic queue size and thus minimises the adverse impacts of queue flush while increasing the benefit of ramp metering. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.
Resumo:
The primary objective of this study is to develop a robust queue estimation algorithm for motorway on-ramps. Real-time queue information is the most vital input for a dynamic queue management that can treat long queues on metered on-ramps more sophistically. The proposed algorithm is developed based on the Kalman filter framework. The fundamental conservation model is used to estimate the system state (queue size) with the flow-in and flow-out measurements. This projection results are updated with the measurement equation using the time occupancies from mid-link and link-entrance loop detectors. This study also proposes a novel single point correction method. This method resets the estimated system state to eliminate the counting errors that accumulate over time. In the performance evaluation, the proposed algorithm demonstrated accurate and reliable performances and consistently outperformed the benchmarked Single Occupancy Kalman filter (SOKF) method. The improvements over SOKF are 62% and 63% in average in terms of the estimation accuracy (MAE) and reliability (RMSE), respectively. The benefit of the innovative concepts of the algorithm is well justified by the improved estimation performance in the congested ramp traffic conditions where long queues may significantly compromise the benchmark algorithm’s performance.
Resumo:
One of the primary desired capabilities of any future air traffic separation management system is the ability to provide early conflict detection and resolution effectively and efficiently. In this paper, we consider the risk of conflict as a primary measurement to be used for early conflict detection. This paper focuses on developing a novel approach to assess the impact of different measurement uncertainty models on the estimated risk of conflict. The measurement uncertainty model can be used to represent different sensor accuracy and sensor choices. Our study demonstrates the value of modelling measurement uncertainty in the conflict risk estimation problem and presents techniques providing a means of assessing sensor requirements to achieve desired conflict detection performance.
Resumo:
An online secondary path modelling method using a white noise as a training signal is required in many applications of active noise control (ANC) to ensure convergence of the system. Not continually injection of white noise during system operation makes the system more desirable. The purposes of the proposed method are two folds: controlling white noise by preventing continually injection, and benefiting white noise with a larger variance. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. This paper proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. Comparative simulation results shown in this paper indicate effectiveness of the proposed approach in controlling active noise.
Resumo:
This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the proposed system there is no need for using offline estimation. The proposed method consists of two steps: a noise controller which is based on an FxLMS algorithm, and a variable step size (VSS) LMS algorithm which is used to adapt the modeling filter with the secondary path. In order to increase performance of the algorithm in a faster convergence and accurate performance, we stop the VSS-LMS algorithm at the optimum point. The results of computer simulation shown in this paper indicate effectiveness of the proposed method.
Resumo:
We propose a new active noise control (ANC) technique. The technique has a feedback structure to have a simple configuration in practical implementation. In this approach, the secondary path is modelled online to ensure convergence of the system as the secondary paths are practically time varying or non-linear. The proposed method consists of two steps: a noise controller which is based on a modified FxLMS algorithm, and a new variable step size (VSS) LMS algorithm which is used to adapt the modelling filter with the secondary path. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Eliminating continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. The computer simulations are presented to show the effectiveness of the proposed method.
Resumo:
This research has been conducted to ascertain whether people with certain personality types exhibit preferences for particular game genres. Four hundred and sixty-six participants completed an online survey in which they described their preference for various game genres and provided measures of personality. Personality types were measured using the five-factor model of personality. Significant relationships between personality types and game genres were found. The results are interpreted in the context of the features of particular game genres and possible matches between personality traits and these features.
Analysis and optimisation of the preferences of decision-makers in black-start group decision-making
Resumo:
As the first stage of power system restoration after a blackout, an optimal black-start scheme is very important for speeding up the whole restoration procedure. Up to now, much research work has been done on generating or selecting an optimal black-start scheme by a single round of decision-making. However, less attention has been paid for improving the final decision-making results through a multiple-round decision-making procedure. In the group decision-making environment, decision-making results evaluated by different black-start experts may differ significantly with each other. Thus, the consistency of black-start decision-making results could be deemed as an important indicator in assessing the black-start group decision-making results. Given this background, an intuitionistic fuzzy distance-based method is presented to analyse the consistency of black-start group decision-making results. Moreover, the weights of black-start indices as well as the weights of decision-making experts are modified in order to optimise the consistency of black-start group decision-making results. Finally, an actual example is served for demonstrating the proposed method.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This project researched the performance of emerging digital technology for high voltage electricity substations that significantly improves safety for staff and reduces the potential impact on the environment of equipment failure. The experimental evaluation used a scale model of a substation control system that incorporated real substation control and networking equipment with real-time simulation of the power system. The outcomes confirm that it is possible to implement Ethernet networks in high voltage substations that meet the needs of utilities; however component-level testing of devices is necessary to achieve this. The assessment results have been used to further develop international standards for substation communication and precision timing.
Resumo:
Radio Frequency Identification is a wireless identification method that utilizes the reception of electromagnetic radio waves. This research has proposed a novel model to allow for an in-depth security analysis of current protocols and developed new flexible protocols that can be adapted to offer either stronger security or better efficiency.
Resumo:
This paper outlines an innovative and feasible flight control scheme for a rotary-wing unmanned aerial system (RUAS) with guaranteed safety and reliable flight quality in a gusty environment. The proposed control methodology aims to increase gust-attenuation capability of a RUAS to ensure improved flight performance when strong gusts occur. Based on the design of an effective estimator, an altitude controller is firstly constructed to synchronously compensate for fluctuations of the main rotor thrust which might lead to crashes in a gusty environment. Afterwards, a nonlinear state feedback controller is proposed to stabilize horizontal positions of the RUAS with gust-attenuation property. Performance of the proposed control framework is evaluated using parameters of a Vario XLC helicopter and high-fidelity simulations show that the proposed controllers can effectively reduce side-effect of gusts and demonstrate performance improvement when compared with the proportional-integral-derivative (PID) controllers.
Resumo:
This paper presents a nonlinear gust-attenuation controller based on constrained neural-network (NN) theory. The controller aims to achieve sufficient stability and handling quality for a fixed-wing unmanned aerial system (UAS) in a gusty environment when control inputs are subjected to constraints. Constraints in inputs emulate situations where aircraft actuators fail requiring the aircraft to be operated with fail-safe capability. The proposed controller enables gust-attenuation property and stabilizes the aircraft dynamics in a gusty environment. The proposed flight controller is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equations based on an policy iteration (PI) approach. Performance of the controller is evaluated using a high-fidelity six degree-of-freedom Shadow UAS model. Simulations show that our controller demonstrates great performance improvement in a gusty environment, especially in angle-of-attack (AOA), pitch and pitch rate. Comparative studies are conducted with the proportional-integral-derivative (PID) controllers, justifying the efficiency of our controller and verifying its suitability for integration into the design of flight control systems for forced landing of UASs.