375 resultados para Enzyme applications
Resumo:
Real-time locating systems (RTLSs) are considered an effective way to identify and track the location of an object in both indoor and outdoor environments. Various RTLSs have been developed and made commercially available in recent years. Research into RTLSs in the construction sector is ubiquitous and results have been published in many construction-related academic journals over the past decade. A succinct and systematic review of current applications would help academics, researchers and industry practitioners in identifying existing research deficiencies and therefore future research directions. However, such a review is lacking to date. This paper provides a framework for understanding RTLS research and development in the construction literature over the last decade. The research opportunities and directions of construction RTLS are highlighted. Background information relating to construction RTLS trends, accuracy, deployment, cost, purposes, advantages and limitations is provided. Four major research gaps are identified and research opportunities and directions are highlighted.
Resumo:
The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased.
Resumo:
Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
Inorganic–organic clays (IOCs), clays intercalated with both organic cations such as cationic surfactants and inorganic cations such as metal hydroxy polycations have the properties of both organic and pillared clays, and thereby the ability to remove both inorganic and organic contaminants from water simultaneously. In this study, IOCs were synthesised using three different methods with different surfactant concentrations. Octadecyltrimethylammonium bromide (ODTMA) and hydroxy aluminium ([Al13O4 (OH)24(H2O)12]7+ or Al13) are used as the organic and inorganic modifiers (intercalation agents). According to the results, the interlayer distance, the surfactant loading amount and the Al/Si ratio of IOCs strictly depend on the intercalation method and the intercalation agent ratio. Interlayers of IOCs synthesised by intercalating ODTMA before Al13 and IOCs synthesised by simultaneous intercalation of ODTMA and Al13 were increased with increasing the ODTMA concentration used in the synthesis procedure and comparatively high loading amounts could be observed in them. In contrast, Al/Si decreased with increasing ODTMA concentration in these two types of IOCs. The results suggest that Al-pillars can be fixed within the interlayers by calcination and any increment in the amount of ODTMA used in the synthesis procedure did not affect the interlayer distance of the IOCs. Overall the study provides valuable insights into the structure and properties of the IOCs and their potential environmental applications.
Resumo:
Mm-wave radars have an important role to play in field robotics for applications that require reliable perception in challenging environmental conditions. This paper presents an experimental characterisation of the Delphi Electronically Scanning Radar (ESR) for mobile robotics applications. The performance of the sensor is evaluated in terms of detection ability and accuracy, for varying factors including: sensor temperature, time, target’s position, speed, shape and material. We also evaluate the sensor’s target separability performance.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.
Resumo:
The research reported in this paper documents the use of Web2.0 applications with six Western Australian schools that are considered to be regional and/or remote. With a population of two million people within an area of 2,525,500 square kilometres Western Australia has a number of towns that are classified as regional and remote. Each of the three education systems have set up telecommunications networks to improve learning opportunities for students and administrative services for staff through a virtual private network (VPN) with access from anywhere, anytime and ultimately reduce the feeling of professional and social dislocation experienced by many teachers and students in the isolated communities. By using Web2.0 applications including video conferencing there are enormous opportunities to close the digital divide within the broad directives of the Networking the Nation plan. The Networking the Nation plan aims to connect all Australians regardless of where they are hence closing the digital divide between city and regional living. Email and Internet facilities have greatly improved in rural, regional and remote areas supporting every day school use of the Internet. This study highlights the possibilities and issues for advanced telecommunications usage of Web2.0 applications discussing the research undertaken with these schools. (Contains 1 figure and 3 tables.)
Resumo:
Given the impact of standardization and high-stakes testing on literacy education policy internationally, it is encouraging to read fresh accounts of critical literacy in practice being enacted in many different educational contexts. Critical Literacy Practice: Applications of Critical Theory in Diverse Settings delivers what its title promises, namely, serious scholarly accounts of educators working to practice critical literacy and address the complexity that it entails. Importantly, the contributors include both recognized and emerging researchers in critical literacy studies. Critical literacy needs input from culturally diverse and new scholars to address crucial and unfamiliar issues as well as perennial injustices relating to poverty, race, ethnicity, gender, sexuality, and location...
Resumo:
Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R2 > 0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89 mg g‒1 and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.
Resumo:
Since its inception, the Systems Theory Framework of career development has afforded ready translation into practice, especially into career counselling and qualitative career assessment. Through its clearly articulated constructs and the clarity of its diagrammatic representation, the Systems Theory Framework has facilitated the development of qualitative career assessment instruments as well as a quantitative measure. This article briefly overviews these practical applications of the Systems Theory Framework as well as its application in career counselling through a story telling approach. The article concludes by offering a synthesis of and considering future directions for the Systems Theory Framework’s practical applications.
Resumo:
One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.
Resumo:
Considered to be the next generation of heat transfer fluids, nanofluids have been receiving a growing amount of attention in the past decade despite the controversy and inconsistencies that have been reported. Nanofluids have great potential in a wide range of fields, particularly for solar thermal applications. This paper presents a comprehensive review of the literature on the enhancements in thermophysical and rheological properties resulting from experimental works conducted on molten salt nanofluids that are used in solar thermal energy systems. It was found that an increase in specific heat of 10–30% was achieved for most nanofluids and appeared independent of particle size and to an extent mass concentration. The specific heat increase was attributed to the formation of nanostructures at the solid–liquid interface and it was also noted that the aggregation of nanoparticles has detrimental effects on the specific heat increase. Thermal conductivity was also found to increase, though less consistently, ranging from 3% to 35%. Viscosity was seen to increase with the addition of nanoparticles and is dependent on the amount of aggregation of the particles. An in-depth micro level analysis of the mechanisms behind the thermophysical property changes is presented in this paper. In addition, possible trends are discussed relating to current theorised mechanisms in an attempt to explain the behaviour of molten salt nanofluids.
Resumo:
Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.
Resumo:
Parallel programming and effective partitioning of applications for embedded many-core architectures requires optimization algorithms. However, these algorithms have to quickly evaluate thousands of different partitions. We present a fast performance estimator embedded in a parallelizing compiler for streaming applications. The estimator combines a single execution-based simulation and an analytic approach. Experimental results demonstrate that the estimator has a mean error of 2.6% and computes its estimation 2848 times faster compared to a cycle accurate simulator.