534 resultados para Curriculum subject
Resumo:
This chapter describes an innovative method of curriculum design that is based on combining phenomenographic research, and the associated variation theory of learning, with the notion of disciplinary threshold concepts to focus specialised design attention on the most significant and difficult parts of the curriculum. The method involves three primary stages: (i) identification of disciplinary concepts worthy of intensive curriculum design attention, using the criteria for threshold concepts; (ii) action research into variation in students’ understandings/misunderstandings of those concepts, using phenomenography as the research approach; (iii) design of learning activities to address the poorer understandings identified in the second stage, using variation theory as a guiding framework. The curriculum design method is inherently theory and evidence based. It was developed and trialed during a two-year project funded by the Australian Learning and Teaching Council, using physics and law disciplines as case studies. Disciplinary teachers’ perceptions of the impact of the method on their teaching and understanding of student learning were profound. Attempts to measure the impact on student learning were less conclusive; teachers often unintentionally deviated from the design when putting it into practice for the first time. Suggestions for improved implementation of the method are discussed.
Resumo:
This paper explores inquiry skills in the Australian Curriculum in relation to inquiry learning pedagogy. Inquiry skills in the Australian Curriculum are represented as questioning skills (i.e. posing and evaluating questions and hypotheses), information literacy (i.e. seeking, evaluating, selecting and using information), ICT literacy (i.e. fluency with computer hardware and software) and discipline specific skills (i.e. data gathering, mathematical measurement, data analysis and presentation of data). This paper provides an explanation of inquiry learning pedagogy that complements the Australian Curriculum inquiry skills.
Resumo:
The QUT Sessional Academic Program (SAP) has scaffolded levels, each with experience-appropriate objectives: • SAP 1: Introduction to Learning and Teaching aims to develop confidence and build awareness of pedagogy and managing class-room scenarios. • SAP 2: Learning and Teaching in Large Units focuses on aligning curriculum and assessment through learning activities and builds a community of teaching practice with sessionals and subject coordinators. • SAP 3: Developing your Teaching Practice focuses on whole of university and classroom strategies to ensure student success through effective feedback; reflective practice and learning communities. • SAP 4: Enhancing your Teaching Practice applies these factors to teaching success. In conjunction with: • Sessional Career Advancement Development: for Higher Degree Research students/ sessional staff who aspire to become academics provides guidance on developing an academic portfolio in teaching, research and service. And • Sessional Academic Success program providing ongoing, local support (see separate nomination). A critical factor in its success is its praxis approach. Theoretical principles are modelled. Eg, ‘active learning’ is explained and modelled through learning activities, which participants evaluate ‘on the fly’ against the criteria of learning, engagement and connection with peers. The topics ‘learning communities’ and ‘reflective practice’ are explored as a learning community–then applied in participants’ classes, with reflections shared in the next session. This produces a ‘meta-awareness’ of theory and principles, as they are explained, applied in practice, and critically analysed for their effectiveness in workshops.
Resumo:
A theoretical rationale, policy analysis and research agenda for a critical sociology of language and literacy curriculum, outlining the agenda for a political economy of textbooks.
Resumo:
Media education has been included as a mandatory component of the Arts within the new Australian national curriculum, which purports to set out a framework that encompasses core knowledge, understanding and skills critical to twenty-first century learning. This will position Australia as the only country to require media education as a compulsory aspect of Arts education and one of the first to implement a sequenced national media education curriculum from pre-school to year 12. A broad framework has been outlined for what the Media Arts curriculum will encompass and in this article we investigate the extent to which this framework is likely to provide media educators the opportunity to broaden the scope of established media education to effectively educate students about the ever-changing nature of media ecologies. The article outlines significant shifts occurring in the film and television industries to identify the types of knowledge students may need to understand these changes. This is followed by an analysis of existing state-based media curricula offered at years 11 and 12 in Australia to demonstrate that the concepts of institutions and audiences are not currently approached in ways that reflect contemporary media ecologies.
Resumo:
The National Curriculum is an innovation in Australian schooling history and is likely to have a widespread and long-term impact on schools, teachers and students. This research used theoretical frameworks informed by Leithwood (1994) and Fullan (2007), and concepts related to innovation, to contribute to an understanding that may support a better understanding of teachers' perceptions when leading curriculum change such as a National Curriculum in schools. This research concludes that teachers who participated in the research demonstrated that their perceptions of a National Curriculum implementation are influenced by their perceptions of school leadership. Specifically, teachers with positive perceptions of their Principal's leadership also had positive perceptions of their capacity to implement the new National Curriculum.
Resumo:
In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.
Resumo:
The Australian Curriculum: English (AC:E) is being implemented in Queensland and asks teachers and curriculum designers to incorporate the cross curriculum priority of Sustainability. This paper examines some texts suitable for inclusion in classroom study and suggests some companion texts that may be studied alongside them, including online resources by the ABC and those developed online for the Australian Curriculum. We also suggest some formative and summative assessment possibilities for responding to the selected works in this guide. We have endeavoured to investigate literature that enable students to explore and produce text types across the three AC:E categories: persuasive, imaginative and informative. The selected texts cover traditional novels, novellas, Sci-fi and speculative fiction, non-fiction, documentary, feature film and animation. Some of the texts reviewed here also cover the other cross curriculum priorities including texts by Aboriginal and Torres Strait Islander writers and some which also include Asian representations. We have also indicated which of the AC:E the general capabilities are addressed in each text.
Resumo:
Philosophical inquiry in the teaching and learning of mathematics has received continued, albeit limited, attention over many years (e.g., Daniel, 2000; English, 1994; Lafortune, Daniel, Fallascio, & Schleider, 2000; Kennedy, 2012a). The rich contributions these communities can offer school mathematics, however, have not received the deserved recognition, especially from the mathematics education community. This is a perplexing situation given the close relationship between the two disciplines and their shared values for empowering students to solve a range of challenging problems, often unanticipated, and often requiring broadened reasoning. In this article, I first present my understanding of philosophical inquiry as it pertains to the mathematics classroom, taking into consideration the significant work that has been undertaken on socio-political contexts in mathematics education (e.g., Skovsmose & Greer, 2012). I then consider one approach to advancing philosophical inquiry in the mathematics classroom, namely, through modelling activities that require interpretation, questioning, and multiple approaches to solution. The design of these problem activities, set within life-based contexts, provides an ideal vehicle for stimulating philosophical inquiry.
Resumo:
Invited Presentation on my book Architecture for a Free Subjectivity. In March of 1982, Skyline, the Institute for Architecture and Urban Studies serial, published the landmark interview between Paul Rabinow, an American anthropologist, and Michel Foucault, which would only appear two years later under the title “Space, Knowledge, and Power,” in Rabinow’s edited book The Foucault Reader. Foucault said that in the spatialization of knowledge and power beginning in the 18th century, architecture is not a signifier or metaphor for power, it is rather the “technique for practising social organization.” The role of the IAUS in the architectural dissemination of Foucault’s ideas on the subject and space in the North American academy – such as the concept “heterotopia,” and Foucault’s writing on surveillance and Jeremy Bentham’s Panopticon, subsequently analysed by Georges Teyssot, who was teaching at the Venice School – is well known. Teyssot’s work is part of the historical canalization of Foucauldianism, and French subjectivity more broadly, along its dizzying path, via Italy, to American architecture schools, where it solidified in the 1980s paradigm that would come to be known as American architecture theory. Foucault was already writing on incarceration and prisons, from the 1970s. (In the 1975 lectures he said “architecture was responsible for the invention of madness.”) But this work was not properly incorporated into architectural discussion until the early ’80s. What is not immediately apparent, what this history suggests to me is that subjectivity was not a marginal topic within “theory”, but was perhaps a platform and entry point for architecture theory. One of the ideas that I’m working on is that “theory” can be viewed, historically, as the making of architectural subjectivity, something that can be traced back to the Frankfurt School critique which begins with the modern subject...
Resumo:
This paper explores issues of gender in Year 10 Australian students‘ experiences of science at school, their self-reported ability in science and their perceptions of science as a subject choice for senior secondary school. A sample of 3759 Year 10 students from across Australia responded to Likert-style questions related to these issues, with findings showing gender differences in perceptions of science, self-rated ability, and reasons for choosing not to study further science. Moreover, interesting contrasts were revealed in patterns of difference of self-rated ability for boys and girls across single-sex and co-educational schools.
Resumo:
Currently a range of national policy settings are reshaping schooling and teacher education in Australia. This paper presents some of the findings from a small qualitative pilot study conducted with a group of final year pre-service teachers studying a secondary social science curriculum method unit in an Australian university. One of the study’s research objectives aimed at identifying how students reflected on their capacity to navigate curriculum change and, more specifically, on teaching about Australia and Asia in the forthcoming implementation of the first national history curriculum. The unit was designed and taught by the researcher on the assumption that beginning social science teachers need to be empowered to deal with the curriculum change they’ll encounter throughout their careers. The pilot study’s methodology was informed by a constructivist approach to grounded theory and its scope was limited to one semester with volunteer students. Of the pre-service teacher reflections on their preparedness to teach, this paper reports on the content, pedagogy and learning they experienced in one segment of the unit with specific reference to the new history curriculum’s ‘Australia in a world history’ approach and the development of Asia literacy. The findings indicate that whilst pre-service teachers valued the opportunity to engage with learning experiences which enhanced their intercultural understanding and extended their pedagogical and content knowledge on campus, the nature of the final practicum in schools was also influential in shaping their preparedness to enter the profession.
Resumo:
Objective To understand how the formal curriculum experience of an Australian undergraduate pharmacy program supports students’ professional identity formation. Methods A qualitative ethnographic study was conducted over four weeks using participant observation and examined the ‘typical’ student experience from the perspective of a pharmacist. A one-week period of observation was undertaken with each of the four year groups (that is, for years one to four) comprising the undergraduate curriculum. Data were collected through observation of the formal curriculum experience using field notes, a reflective journal and informal interviews with 38 pharmacy students. Data were analyzed thematically using an a priori analytical framework. Results Our findings showed that the observed curriculum was a conventional curricular experience which focused on the provision of technical knowledge and provided some opportunities for practical engagement. There were some opportunities for students to imagine themselves as pharmacists, for example, when the lecture content related to practice or teaching staff described their approach to practice problems. However, there were limited opportunities for students to observe pharmacist role models, experiment with being a pharmacist or evaluate their professional identities. While curricular learning activities were available for students to develop as pharmacists e.g. patient counseling, there was no contact with patients and pharmacist academic staff tended to role model as educators with little evidence of their pharmacist selves. Conclusion These findings suggest that the current conventional approach to the curriculum design may not be fully enabling learning experiences which support students in successfully negotiating their professional identities. Instead it appeared to reinforce their identities as students with a naïve understanding of professional practice, making their future transition to professional practice challenging.