504 resultados para Current sources
Resumo:
Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.
Resumo:
A cylindrical magnetron system and a hybrid inductively coupled plasma-assisted magnetron deposition system were examined experimentally in light of their discharge characteristics with a view to stress the enhanced controllability of the hybrid system. The comparative study has shown that the hybrid magnetron + the inductively coupled plasma system is a flexible, powerful, and convenient tool that has certain advantages as compared with the cylindrical dc magnetrons. In particular, the hybrid system features more linear current-voltage characteristics and the possibility of a bias-independent control of the discharge current.
Resumo:
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Resumo:
The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.
Resumo:
The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm2) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.
Resumo:
Cold atmospheric-pressure plasma plumes are generated in the ambient air by a single-electrode plasma jet device powered by pulsed dc and ac sine-wave excitation sources. Comprehensive comparisons of the plasma characteristics, including electrical properties, optical emission spectra, gas temperatures, plasma dynamics, and bacterial inactivation ability of the two plasmas are carried out. It is shown that the dc pulse excited plasma features a much larger discharge current and stronger optical emission than the sine-wave excited plasma. The gas temperature in the former discharge remains very close to the room temperature across the entire plume length; the sine-wave driven discharge also shows a uniform temperature profile, which is 20-30 degrees higher than the room temperature. The dc pulse excited plasma also shows a better performance in the inactivation of gram-positive staphylococcus aureus bacteria. These results suggest that the pulsed dc electric field is more effective for the generation of nonequilibrium atmospheric pressure plasma plumes for advanced plasma health care applications.
Resumo:
Using Monte Carlo simulation technique, we have calculated the distribution of ion current extracted from low-temperature plasmas and deposited onto the substrate covered with a nanotube array. We have shown that a free-standing carbon nanotube is enclosed in a circular bead of the ion current, whereas in square and hexagonal nanotube patterns, the ion current is mainly concentrated along the lines connecting the nearest nanotubes. In a very dense array (with the distance between nanotubes/nanotube-height ratio less than 0.05), the ions do not penetrate to the substrate surface and deposit on side surfaces of the nanotubes.
Resumo:
A newly developed middle-frequency (2 MHz) inductively coupled plasma (ICP) source with internal oscillating current is used to treat biodegradable food packaging surfaces. Initially hydrophilic packaging turns to hydrophobic after being processed by ICP plasma. The investigation of optical emission from hydrocarbon radicals in the Ar/ CH4 plasma helps us to understand the property of the hydrophobicity of the surfaces. © 2008 IEEE.
Resumo:
Plasma transport in a hybrid dc vacuum arc plasma source for ion deposition and plasma immersion treatment is considered. It is found that external crossed electric and magnetic fields near the substrate can significantly reduce the relative amplitude of ion current fluctuations I-f at the substrate surface. In particular, I-f decreases with the applied magnetic field when the bias voltage exceeds 300 V, thus allowing one to reduce the deviations from the rated process parameters. This phenomenon can be attributed to an interaction between the metal-plasma jet from the arc source and the discharge plasma in the crossed fields. © 2006 American Institute of Physics.
Resumo:
The effects of an inductively rotating current were observed on low-frequency inductively coupled plasmas. The spatial distribution of electromagnetic fields was investigated in a cylindrical metallic chamber filled with dense plasma. The distribution of the magnetic field in plasma chamber was observed for rarefied and dense plasmas. The plasma was assumed as uniform in the electromagnetic fields. The results showed the plasma density increased with power and the electron density increased with pressure.
Resumo:
In this single work to cover the use of plasma as nanofabrication tool in sufficient depth internationally renowned authors with much experience in this important method of nanofabrication look at reactive plasma as a nanofabrication tool, plasma production and development of plasma sources, as well as such applications as carbon-based nanostructures, low-dimensional quantum confinement structures and hydroxyapatite bioceramics. Written principally for solid state physicists and chemists, materials scientists, and plasma physicists, the book concludes with the outlook for such applications. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
The usual practice to study a large power system is through digital computer simulation. However, the impact of large scale use of small distributed generators on a power network cannot be evaluated strictly by simulation since many of these components cannot be accurately modelled. Moreover, the network complexity makes the task of practical testing on a physical network nearly impossible. This study discusses the paradigm of interfacing a real-time simulation of a power system to real-life hardware devices. This type of splitting a network into two parts and running a real-time simulation with a physical system in parallel is usually termed as power-hardware-in-the-loop (PHIL) simulation. The hardware part is driven by a voltage source converter that amplifies the signals of the simulator. In this paper, the effects of suitable control strategy on the performance of PHIL and the associated stability aspects are analysed in detail. The analyses are validated through several experimental tests using an real-time digital simulator.
Resumo:
Transitions between the two discharge modes in a low-frequency (∼460 kHz) inductively coupled plasma sustained by an internal oscillating radio frequency (rf) current sheet are studied. The unidirectional rf current sheet is generated by an internal antenna comprising two orthogonal sets of synphased rf currents driven in alternately reconnected copper litz wires. It is shown that in the low-to-intermediate pressure range the plasma source can be operated in the electrostatic (E) and electromagnetic (H) discharge modes. The brightness of the E -mode argon plasma glow is found remarkably higher than in inductively coupled plasmas with external flat spiral "pancake" coils. The cyclic variations of the input rf power result in pronounced hysteretic variations of the optical emission intensity and main circuit parameters of the plasma source. Under certain conditions, it appears possible to achieve a spontaneous E→H transition ("self-transition"). The observed phenomenon can be attributed to the thermal drift of the plasma parameters due to the overheating of the working gas. The discharge destabilizing factors due to the gas heating and step-wise ionization are also discussed. © 2005 American Vacuum Society.
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.