370 resultados para Vehicle Damage.
Resumo:
Modal flexibility is a widely accepted technique to detect structural damage using vibration characteristics. Its application to detect damage in long span large diameter cables such as those used in suspension bridge main cables has not received much attention. This paper uses the modal flexibility method incorporating two damage indices (DIs) based on lateral and vertical modes to localize damage in such cables. The competency of those DIs in damage detection is tested by the numerically obtained vibration characteristics of a suspended cable in both intact and damaged states. Three single damage cases and one multiple damage case are considered. The impact of random measurement noise in the modal data on the damage localization capability of these two DIs is next examined. Long span large diameter cables are characterized by the two critical cable parameters named bending stiffness and sag-extensibility. The influence of these parameters in the damage localization capability of the two DIs is evaluated by a parametric study with two single damage cases. Results confirm that the damage index based on lateral vibration modes has the ability to successfully detect and locate damage in suspended cables with 5% noise in modal data for a range of cable parameters. This simple approach therefore can be extended for timely damage detection in cables of suspension bridges and thereby enhance their service during their life spans.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behavior change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, it is crucial to understand the human factors related theories and practices which will inform the design of an in-vehicle Human Machine Interface (HMI) that could provide real-time driver feedback and consequently improve both fuel efficiency and safety. This paper provides a comprehensive review of the current state of published literature on in-vehicle systems to identify and evaluate the impact of eco-driving and safety feedback systems. This paper also discusses how these factors may conflict with one another and have a negative effect on road safety, while also exploring possible eco-driving practices that could encourage more sustainable, environmentally-conscious and safe driving behavior. The review revealed a lack of comprehensive theoretical research integrating eco-driving and safe driving, and no current available HMI covering both aspects simultaneously. Furthermore, the review identified that some eco-driving in-vehicle systems may enhance fuel efficiency without compromising safety. The review has identified a range of concepts which can be developed to influence driver acceptance of safety and eco-driving systems within the area of HMI. This can promote new research aimed at enhancing our understanding of the relationship between eco-driving and safety from the human factors viewpoint. This provides a foundation for developing innovative, persuasive and acceptable in-vehicle HMI systems to improve fuel efficiency and road safety.
Resumo:
This report provides an overview of the tornado impact on the safe operation and shutdown of nuclear power plants in the United States. The motivation for this review stems from the damage and failure of the Fukushima nuclear power plant on March 11, 2011. That disaster warrants comparison of the safety measures in place within the global nuclear power industry.
Resumo:
This thesis examines the extent of which economic instruments can be used to minimise environmental damage in the coastal and marine environments, and the role of offsets to compensate for residual damage. Economic principles are used to review current command and control systems, potential incentive based mechanisms, and the development of appropriate offsets. Implementing offsets in the marine environment has a number of challenges, so alternative approaches may be necessary. The study finds that offsets in areas remote from the initial impact, or even to protect different species, may be acceptable provided they result in greater conservation benefits than the standard like-for-like offset. This study is particularly relevant for the design of offsets in the coastal and marine environments where there is limited scope for like-for-like offsets.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest as smart materials for novel space-based telescope applications. Dimensional adjustments of adaptive thin polymer films are achieved via controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric property changes that develop during space environmental exposure. The overall materials performance is governed by a combination of chemical and physical degradation processes occurring in low Earth orbit as established by our past laboratory-based materials performance experiments (see report SAND 2005-6846). Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The current project extension has allowed us to design and fabricate small experimental units to be exposed to low Earth orbit environments as part of the Materials International Space Station Experiments program. The space exposure of these piezoelectric polymers will verify the observed trends and their degradation pathways, and provide feedback on using piezoelectric polymer films in space. This will be the first time that PVDF-based adaptive polymer films will be operated and exposed to combined atomic oxygen, solar UV and temperature variations in an actual space environment. The experiments are designed to be fully autonomous, involving cyclic application of excitation voltages, sensitive film position sensors and remote data logging. This mission will provide critically needed feedback on the long-term performance and degradation of such materials, and ultimately the feasibility of large adaptive and low weight optical systems utilizing these polymers in space.
Resumo:
Objective: Drink driving contributes to significant levels of injury and economic loss in China but is not well researched. This study examined knowledge, drink-driving practices, and alcohol misuse problems among general drivers in Yinchuan. The objectives were to gain a better understanding of drink driving in Yinchuan, identify areas that need to be addressed, and compare the results with a similar study in Guangzhou. Methods: This was a cross-sectional study with a survey designed to collect information on participants’ demographic characteristics and their knowledge and practices in relation to drinking and driving. The survey was composed of questions on knowledge and practices in relation to drink driving and was administered to a convenience sample of 406 drivers. Alcohol misuse problems were assessed by using the Alcohol Use Disorders Identification Test (AUDIT). Results: Males accounted for the main proportion of drivers sampled from the general population (“general drivers”). A majority of general drivers in both cities knew that drunk driving had become a criminal offense in 2011; however, knowledge of 2 legal blood alcohol concentration (BAC) limits was quite low. Fewer drivers in Yinchuan (22.6%) than in Guangzhou (27.9) reported having been stopped by police conducting breath alcohol testing at least once in the last 12 months. The mean AUDIT score in Yinchuan (M = 8.2) was higher than that in Guangzhou (M = 7.4), and the proportion of Yinchuan drivers with medium or higher alcohol misuse problems (31.2%) was correspondingly higher than in Guangzhou (23.1%). In Yinchuan, males had a significantly higher AUDIT score than females (t = 3.454, P < .001), similar to Guangzhou. Multiple regression analyses were conducted on potential predictors of the AUDIT score (age, gender, monthly income, education level, years licensed, and age started drinking). There were significant individual contributions of gender (beta = 0.173, P = .09) and age at which drinking started (beta = 0.141, P = .033), but the overall model for Yinchuan was not significant, unlike Guangzhou. Conclusions: The results show that there are shortfalls in knowledge of the legislation and how to comply with it and deficiencies in police enforcement. In addition, there was evidence of drink driving and drink riding at high levels in both cities. Recommendations are made to address these issues.
Resumo:
This research developed a method to detect damage in suspension bridges using vibration characteristics. These bridges exhibit complex vibration and hence it is difficult to use traditional vibration based methods to detect damage in them. This research therefore proposed component specific damage indices and verified their capability to detect and locate damage in the main cables and hangers of suspension bridges.
Resumo:
Introduction: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage. Methods: Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions. Results: Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism. Conclusions: sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.
Resumo:
A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.
Resumo:
A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.
Resumo:
Aim: To systematically review the literature investigating the incidence of fatal and or nonfatal low-speed vehicle run-over (LSVRO) incidents in children aged 0–15 years. Methods: The following databases were searched using specific search terms, from their date of conception up to June 2011: Cochrane Library, Medline, CINAHL, Embase, AMI, Sociological Abstracts, ERIC, PsycArticles, PsycInfo, Urban Studies and Planning; Australian Criminology Database; Dissertations and Thesis; Academic Research Library; Social Services Abstracts; Family and Society; Scopus; and Web of Science. A total of 128 articles were identified in the databases (33 found by hand searching). The title and abstract of these were read, and 102 were removed because they were not primary research articles relating to LSVRO-type injuries. Twenty-six articles were assessed against the inclusion (reporting population level incidence rates) and exclusion criteria, 19 of which were excluded, leaving a total of five articles for inclusion in the review. Findings: Five studies were identified that met the inclusion criteria. The incidence rate in nonfatal LSVRO events varied in the range of 7.09 to 14.79 per 100,000 and from 0.63 to 3.2 per 100,000 in fatal events. Discussion: Using International Classification of Diseases codes for classifying fatal or nonfatal LSVRO incidents is problematic as there is no specific code for LSVRO. The current body of research is void of a comprehensive secular population data analysis. Only with an improved spectrum of incidence rates will appropriate evaluation of this problem be possible, and this will inform nursing prevention interventions. The effect of LSVRO incidents is clearly understudied. More research is required to address incidence rates in relation to culture, environment, risk factors, car design, and injury characteristics. Conclusions: Thevlack of nursing research or policy around this area of injury, most often to children, indicates a field of inquiry and policy development that needs attention.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
Crashes at any particular transport network location consist of a chain of events arising from a multitude of potential causes and/or contributing factors whose nature is likely to reflect geometric characteristics of the road, spatial effects of the surrounding environment, and human behavioural factors. It is postulated that these potential contributing factors do not arise from the same underlying risk process, and thus should be explicitly modelled and understood. The state of the practice in road safety network management applies a safety performance function that represents a single risk process to explain crash variability across network sites. This study aims to elucidate the importance of differentiating among various underlying risk processes contributing to the observed crash count at any particular network location. To demonstrate the principle of this theoretical and corresponding methodological approach, the study explores engineering (e.g. segment length, speed limit) and unobserved spatial factors (e.g. climatic factors, presence of schools) as two explicit sources of crash contributing factors. A Bayesian Latent Class (BLC) analysis is used to explore these two sources and to incorporate prior information about their contribution to crash occurrence. The methodology is applied to the state controlled roads in Queensland, Australia and the results are compared with the traditional Negative Binomial (NB) model. A comparison of goodness of fit measures indicates that the model with a double risk process outperforms the single risk process NB model, and thus indicating the need for further research to capture all the three crash generation processes into the SPFs.
Resumo:
MGMT is the primary vehicle for cellular removal of alkyl lesions from the O-6 position of guanine and the O-4 position of thymine. While key to the maintenance of genomic integrity, MGMT also removes damage induced by alkylating chemotherapies, inhibiting the efficacy of cancer treatment. Germline variants of human MGMT are well-characterized, but somatic variants found in tumors were, prior to this work, uncharacterized. We found that MGMT G132R, from a human esophageal tumor, and MGMT G156C, from a human colorectal cancer cell line, are unable to rescue methyltransferase-deficient Escherichia coli as well as wild type (WT) human MGMT after treatment with a methylating agent. Using pre-steady state kinetics, we biochemically characterized these variants as having a reduced rate constant. G132R binds DNA containing an O6-methylguanine lesion half as tightly as WT MGMT, while G156C has a 40-fold decrease in binding affinity for the same damaged DNA versus WT. Mammalian cells expressing either G132R or G156C are more sensitive to methylating agents than mammalian cells expressing WT MGMT. G132R is slightly resistant to O6-benzylguanine, an inhibitor of MGMT in clinical trials, while G156C is almost completely resistant to this inhibitor. The impared functionality of expressed variants G132R and G156C suggests that the presence of somatic variants of MGMT in a tumor could impact chemotherapeutic outcomes.
Resumo:
With recent economic growth in Oman there is increased use of heavy vehicles, presenting an increase in heavy vehicle crashes, associated fatalities and injuries. Vehicle defects cause a significant number of heavy vehicle crashes in Oman and increase the likelihood of fatalities. The aim of this study is to explore factors contributing to driving with vehicle defects in the Omani heavy vehicle industry. A series of qualitative participants observations were conducted in Oman with 49 drivers. These observations also involved discussion and interviews with drivers. The observations occurred at two road-side locations where heavy vehicle drivers gather for eating, resting, vehicle check-up, etc. Data collection was conducted over a three week period. The data was analysed using thematic analysis. A broad number of factors were identified as contributing to the driving of vehicles with defects. Participants indicated that tyres and vehicle mechanical faults were a common issue in the heavy vehicle industry. Participants regularly reported that their companies use cheap, poor quality standards parts and conducted minimal maintenance. Drivers also indicated that they felt powerless to resist company pressure to drive vehicles with known faults. In addition, drivers reported that traffic police were generally in effective and lacked skill to appropriately conduct roadside inspection on trucks. Further, participants stated that it was possible for companies to avoid being fined during annual or roadside vehicle inspections if members of the company knew the traffic police officer conducting the inspection. Moreover, fines issued by police are generally directed to the individual driver rather than being applied to the company, thus providing no incentive for companies to address vehicle faults. The implications of the findings are discussed.