571 resultados para Academic Field
Resumo:
Building distributed leadership for effective supervision of creative practice higher research degrees is an Office for Learning and Teaching (OLT) funded project, conducted in partnership between Queensland University of Technology, The University of Melbourne, Auckland University of Technology, University of New South Wales and University of Western Sydney.
The project was initiated to develop a cooperative approach to establishing an understanding of the contextual frameworks of the emergent field of creative practice higher degrees by research (HDRs); capturing early insights of administrators and supervisors; gathering exemplars of good practices; and establishing an in-common understanding of effective approaches to supervision.
To this end, the project has produced:
• A literature review, to provide a research foundation for creative practice higher research degree supervision (Chapter 3).
• A contextual review of disciplinary frameworks for HDR programs, produced through surveys of postgraduate research administrators (Section 4.1), and an analysis of institutional materials and academic development programs for supervisors (Section 4.2).
• A National Symposium, Effective Supervision of Creative Arts Research Degrees (ESCARD), at QUT in Brisbane in February 2013, with 62 delegates from 20 Australasian Universities, at which project findings were disseminated, and delegates presented case studies and position papers, and participated in discussions on key issues for supervisors (Appendix 1).
• Resources, including a booklet for supervisors: 12 Principles for the Effective Supervision of Creative Practice Higher Research Degrees, which encapsulates attitudes, insights and good practices of experienced and new supervisors. It was produced through a content analysis of interviews with twenty-five supervisors in creative disciplines (visual and performing arts, music, new media, creative writing and design) (Printed booklet, PDF, Appendix 3).
• A project website to disseminate project outcomes
Resumo:
One of very few field experiments in tax compliance, this study generates a unique data set on Swiss taxpayers’ underdeclaration of income and wealth and overdeduction of tax credits by obtaining exclusive access to tax-return corrections made by the tax administration. Using this commune-level data from Switzerland, it explores the influence on tax compliance of moral suasion, introduced through a treatment in which taxpayers receive a letter containing normative appeals signed by the commune’s fiscal commissioner. This letter also serves to operationalize elements of social identity and (mutual) trust. Interestingly, the results not only echo the earlier finding that moral suasion has barely any effect on taxpayer compliance, but show clear differences between underdeclaration and overdeduction.
Resumo:
In contemporary Western societies, the years between childhood and young adulthood are commonly understood to be (trans)formative in the reflexive project of sexual self-making (Russell et al. 2012). As sexual subjects in the making, youthful bodies, desires and sexual activities are often perceived as both volatile and vulnerable, thus subjected to instruction and discipline, protection and surveillance. Accordingly, young people’s sexual proximities are closely monitored by social institutions and ‘(hetero)normalising regimes’ (Warner 1999) for any signs that may compromise the end goal of development—a ‘normal’ reproductive heterosexual monogamous adult...
Resumo:
In late 2012 and early 2013 we interviewed 25 experienced and early career supervisors of creative practice higher research degrees. This journey spanned five universities and a broad range of disciplines including visual art, music, performing art, new media, creative writing, fashion, graphic design, interaction design and interior design. Some of the supervisors we interviewed were amongst the first to complete and supervise practice-led and practice-based PhDs; some have advocated for and defined this emergent field; and some belong to the next generation of supervisors who have confidently embarked on this exciting and challenging path. Their reflections have brought to light many insights gained over the past decade. Here we have drawn together common themes into a collection of principles and best practice examples. We present them as advice rather than rules, as one thing that the supervisors were unanimous about is the need to avoid proscriptive models and frameworks, and to foster creativity and innovation in what is still an emergent field of postgraduate supervision. It is with thanks to all of the supervisors who contributed to these conversations, and their generosity in sharing their practices, that we present their advice, exemplars and case studies.
Resumo:
Purpose: Changes in pupil size and shape are relevant for peripheral imagery by affecting aberrations and how much light enters and/or exits the eye. The purpose of this study is to model the pattern of pupil shape across the complete horizontal visual field and to show how the pattern is influenced by refractive error. Methods: Right eyes of thirty participants were dilated with 1% cyclopentolate and images were captured using a modified COAS-HD aberrometer alignment camera along the horizontal visual field to ±90°. A two lens relay system enabled fixation at targets mounted on the wall 3m from the eye. Participants placed their heads on a rotatable chin rest and eye rotations were kept to less than 30°. Best-fit elliptical dimensions of pupils were determined. Ratios of minimum to maximum axis diameters were plotted against visual field angle. Results: Participants’ data were well fitted by cosine functions, with maxima at (–)1° to (–)9° in the temporal visual field and widths 9% to 15% greater than predicted by the cosine of the field angle . Mean functions were 0.99cos[( + 5.3)/1.121], R2 0.99 for the whole group and 0.99cos[( + 6.2)/1.126], R2 0.99 for the 13 emmetropes. The function peak became less temporal, and the width became smaller, with increase in myopia. Conclusion: Off-axis pupil shape changes are well described by a cosine function which is both decentered by a few degrees and flatter by about 12% than the cosine of the viewing angle, with minor influences of refraction.
Resumo:
Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.
Resumo:
Effective social work practice with Aboriginal peoples and communities requires knowledge of operational communication skills and practice methods. In addition, there is also a need for practitioners to be aware of the history surrounding white engagement with Aboriginal communities and their cultures. Indeed, the Australian Association of Social Workers (AASW) acknowledges the importance of social workers practising cultural safety. Engendering knowledge of cultural safety for social work students is the opportunity to listen and talk with Aboriginal people who have experienced the destructive impacts of colonisation and the subsequent disruption to family and community. This article discusses the use of field experiences within a Masters of Social Work (Qualifying) Program (MSW) as an educational method aimed at increasing student awareness of contemporary Aboriginal issues and how to practice effectively and within a culturally safe manner.
Resumo:
One of the main objectives of law schools beyond educating students is to produce viable legal research. The comments in this paper are basically confined to the Australian context, and to examine this topic effectively, it is necessary to briefly review the current tertiary research agenda in Australia. This paper argues that there is a need for recognition and support for an expanded legal research framework along with additional research training for legal academics. There also needs to be more effective methods of measuring and recognising quality in legal research. This method needs to be one that can engender respect in an interdisciplinary context.
Resumo:
A test of the useful field of view was introduced more than two decades ago and was designed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk, as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers and measure speed of visual processing speed for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher order cognitive abilities, but performance also relies on visual sensory function since targets must be visible in order to be attended to. The format of the useful field of view test has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest versions measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and have a positive impact on health and functional well being, with the potential to increase the mobility and hence independence of older adults.
Resumo:
In this age of rapidly evolving technology, teachers are encouraged to adopt ICTs by government, syllabus, school management, and parents. Indeed, it is an expectation that teachers will incorporate technologies into their classroom teaching practices to enhance the learning experiences and outcomes of their students. In particular, regarding the science classroom, a subject that traditionally incorporates hands-on experiments and practicals, the integration of modern technologies should be a major feature. Although myriad studies report on technologies that enhance students’ learning outcomes in science, there is a dearth of literature on how teachers go about selecting technologies for use in the science classroom. Teachers can feel ill prepared to assess the range of available choices and might feel pressured and somewhat overwhelmed by the avalanche of new developments thrust before them in marketing literature and teaching journals. The consequences of making bad decisions are costly in terms of money, time and teacher confidence. Additionally, no research to date has identified what technologies science teachers use on a regular basis, and whether some purchased technologies have proven to be too problematic, preventing their sustained use and possible wider adoption. The primary aim of this study was to provide research-based guidance to teachers to aid their decision-making in choosing technologies for the science classroom. The study unfolded in several phases. The first phase of the project involved survey and interview data from teachers in relation to the technologies they currently use in their science classrooms and the frequency of their use. These data were coded and analysed using Grounded Theory of Corbin and Strauss, and resulted in the development of a PETTaL model that captured the salient factors of the data. This model incorporated usability theory from the Human Computer Interaction literature, and education theory and models such as Mishra and Koehler’s (2006) TPACK model, where the grounded data indicated these issues. The PETTaL model identifies Power (school management, syllabus etc.), Environment (classroom / learning setting), Teacher (personal characteristics, experience, epistemology), Technology (usability, versatility etc.,) and Learners (academic ability, diversity, behaviour etc.,) as fields that can impact the use of technology in science classrooms. The PETTaL model was used to create a Predictive Evaluation Tool (PET): a tool designed to assist teachers in choosing technologies, particularly for science teaching and learning. The evolution of the PET was cyclical (employing agile development methodology), involving repeated testing with in-service and pre-service teachers at each iteration, and incorporating their comments i ii in subsequent versions. Once no new suggestions were forthcoming, the PET was tested with eight in-service teachers, and the results showed that the PET outcomes obtained by (experienced) teachers concurred with their instinctive evaluations. They felt the PET would be a valuable tool when considering new technology, and it would be particularly useful as a means of communicating perceived value between colleagues and between budget holders and requestors during the acquisition process. It is hoped that the PET could make the tacit knowledge acquired by experienced teachers about technology use in classrooms explicit to novice teachers. Additionally, the PET could be used as a research tool to discover a teachers’ professional development needs. Therefore, the outcomes of this study can aid a teacher in the process of selecting educationally productive and sustainable new technology for their science classrooms. This study has produced an instrument for assisting teachers in the decision-making process associated with the use of new technologies for the science classroom. The instrument is generic in that it can be applied to all subject areas. Further, this study has produced a powerful model that extends the TPACK model, which is currently extensively employed to assess teachers’ use of technology in the classroom. The PETTaL model grounded in data from this study, responds to the calls in the literature for TPACK’s further development. As a theoretical model, PETTaL has the potential to serve as a framework for the development of a teacher’s reflective practice (either self evaluation or critical evaluation of observed teaching practices). Additionally, PETTaL has the potential for aiding the formulation of a teacher’s personal professional development plan. It will be the basis for further studies in this field.
Resumo:
Interdisciplinary research is often funded by national government initiatives or large corporate sponsorship, and as such, demands periodic reporting on the use of those funds. For reasons of accountability, governance and communication to the tax payer, knowledge of the outcomes of the research need to be measured and understood. The interdisciplinary approach to research raises many challenges for impact reporting. This presentation will consider what are the best practice workflow models and methodologies.Novel methodologies that can be added to the usual metrics of academic publications include analysis of percentage share of total publications in a subject or keyword field, calculating most cited publication in a key phrase category, analysis of who has cited or reviewed the work, and benchmarking of this data against others in that same category. At QUT, interest in how collaborative networking is trending in a research theme has led to the creation of some useful co-authorship graphs that demonstrate the network positions of authors and the strength of their scientific collaborations within a group. The scale of international collaborations is also worth including in the assessment. However, despite all of the tools and techniques available, the most useful way a researcher can help themselves and the process is to set up and maintain their researcher identifier and profile.
Resumo:
Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.
Resumo:
In nature, the interactions between agents in a complex system (fish schools; colonies of ants) are governed by information that is locally created. Each agent self-organizes (adjusts) its behaviour, not through a central command centre, but based on variables that emerge from the interactions with other system agents in the neighbourhood. Self-organization has been proposed as a mechanism to explain the tendencies for individual performers to interact with each other in field-invasion sports teams, displaying functional co-adaptive behaviours, without the need for central control. The relevance of self-organization as a mechanism that explains pattern-forming dynamics within attacker-defender interactions in field-invasion sports has been sustained in the literature. Nonetheless, other levels of interpersonal coordination, such as intra-team interactions, still raise important questions, particularly with reference to the role of leadership or match strategies that have been prescribed in advance by a coach. The existence of key properties of complex systems, such as system degeneracy, nonlinearity or contextual dependency, suggests that self-organization is a functional mechanism to explain the emergence of interpersonal coordination tendencies within intra-team interactions. In this opinion article we propose how leadership may act as a key constraint on the emergent, self-organizational tendencies of performers in field-invasion sports.
Resumo:
This paper demonstrates that project management is a developing field of academic study in management, of considerable diversity and richness, which can make a valuable contribution to the development of management knowledge, as well as being of considerable economic importance. The paper reviews the substantial progress and trends of research in the subject, which has been grouped into nine major schools of thought: optimization, modelling, governance, behaviour, success, decision, process, contingency, and marketing. The paper addresses interactions between the different schools and with other related management fields, and provides insights into current and potential research in each and across these schools.
Resumo:
Terrorists usually target high occupancy iconic and public buildings using vehicle borne incendiary devices in order to claim a maximum number of lives and cause extensive damage to public property. While initial casualties are due to direct shock by the explosion, collapse of structural elements may extensively increase the total figure. Most of these buildings have been or are built without consideration of their vulnerability to such events. Therefore, the vulnerability and residual capacity assessment of buildings to deliberately exploded bombs is important to provide mitigation strategies to protect the buildings' occupants and the property. Explosive loads and their effects on a building have therefore attracted significant attention in the recent past. Comprehensive and economical design strategies must be developed for future construction. This research investigates the response and damage of reinforced concrete (RC) framed buildings together with their load bearing key structural components to a near field blast event. Finite element method (FEM) based analysis was used to investigate the structural framing system and components for global stability, followed by a rigorous analysis of key structural components for damage evaluation using the codes SAP2000 and LS DYNA respectively. The research involved four important areas in structural engineering. They are blast load determination, numerical modelling with FEM techniques, material performance under high strain rate and non-linear dynamic structural analysis. The response and damage of a RC framed building for different blast load scenarios were investigated. The blast influence region for a two dimensional RC frame was investigated for different load conditions and identified the critical region for each loading case. Two types of design methods are recommended for RC columns to provide superior residual capacities. They are RC columns detailing with multi-layer steel reinforcement cages and a composite columns including a central structural steel core. These are to provide post blast gravity load resisting capacity compared to typical RC column against a catastrophic collapse. Overall, this research broadens the current knowledge of blast and residual capacity analysis of RC framed structures and recommends methods to evaluate and mitigate blast impact on key elements of multi-storey buildings.