449 resultados para negative dimensional integration
Resumo:
Highly controllablefabrication of the nanowire, nanocone, and mixed nanowire/nanowall arrays of iron oxide (hematite, α-Fe2O3) nanostructures in a simple, environment-friendly process is achieved by exposing the metal foils to low-temperature oxygen plasmas. Very dense forests of thin (≈50 nm) and long (up to several μm) nanowires are grown on the electrically biased substrates, whereas the use of the electrically insulated substrate resulted in the formation of a mixed array of nanowires and nanowalls. The proposed mechanism of the nanostructure growth is supported by the numerical simulations demonstrating the key role of the plasma environment in the growth morphology selection.
Resumo:
The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.
Resumo:
The possibility for the switch-over of the growth mode from a continuous network to unidirectional arrays of well-separated, self-organized, vertically oriented graphene nanosheets has been demonstrated using a unique, yet simple plasma-based approach. The process enables highly reproducible, catalyst-free synthesis of arrays of graphene nanosheets with reactive open graphitic edges facing upwards. Effective control over the nanosheet length, number density, and the degree of alignment along the electric field direction is achieved by a simple variation of the substrate bias. These results are of interest for environment-friendly fabrication of next-generation nanodevices based on three-dimensional, ordered self-organized nanoarrays of active nanostructures with very large surface areas and aspect ratios, highly reactive edges, and controlled density on the substrate. Our simple and versatile plasma-based approach paves the way for direct integration of such nanoarrays directly into the Si-based nanodevice platform.
Resumo:
One-dimensional ZnO nanostructures were successfully synthesized on single-crystal silicon substrates via a simple thermal evaporation and vapour-phase transport method under different process temperatures from 500 to 1000 °C. The detailed and in-depth analysis of the experimental results shows that the growth of ZnO nanostructures at process temperatures of 500, 800, and 1000 °C is governed by different growth mechanisms. At a low process temperature of 500 °C, the ZnO nanostructures feature flat and smooth tips, and their growth is primarily governed by the vapour-solid mechanism. At an intermediate process temperature of 800 °C, the ZnO nanostructures feature cone-shape tips, and their growth is primarily governed by the self-catalyzed and saturated vapour–liquid–solid mechanism. At a high process temperature of 1000 °C, the alloy tip appears on the front side of the ZnO nanostructures, and their growth is primarily governed by the common catalyst-assisted vapour–liquid–solid mechanism. It is also shown that the morphological, structural, optical, and compositional properties of the synthesized ZnO nanostructures are closely related to the process temperature. These results are highly relevant to the development of light-emitting diodes, chemical sensors, energy conversion devices, and other advanced applications.
Resumo:
Plasma Nanoscience is a multidisciplinary research field which aims to elucidate the specific roles, purposes, and benefits of the ionized gas environment in assembling and processing nanoscale objects in natural, laboratory and technological situations. Compared to neutral gas-based routes, in low-temperature weakly-ionized plasmas there is another level of complexity related to the necessity of creating and sustaining a suitable degree of ionization and a much larger number of species generated in the gas phase. The thinner the nanotubes, the stronger is the quantum confinement of electrons and more unique size-dependent quantum effects can emerge. Furthermore, due to a very high mobility of electrons, the surfaces are at a negative potential compared to the plasma bulk. Therefore, there are non-uniform electric fields within the plasma sheath. The electric field lines start in the plasma bulk and converge to the sharp tips of the developing one-dimensional nanostructures.
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
In contrast to extensive studies on familial breast cancer, it is currently unclear whether defects in DNA double strand break (DSB) repair genes play a role in sporadic breast cancer development and progression. We performed analysis of immunohistochemistry in an independent cohort of 235 were sporadic breast tumours. This analysis suggested that RAD51 expression is increased during breast cancer progression and metastasis and an oncogenic role for RAD51 when deregulated. Subsequent knockdown of RAD51 repressed cancer cell migration in vitro and reduced primary tumor growth in a syngeneic mouse model in vivo. Loss of RAD51 also inhibited associated metastasis not only in syngeneic mice but human xenografts and changed the metastatic gene expression profile of cancer cells, consistent with inhibition of distant metastasis. This demonstrates for the first time a new function of RAD51 that may underlie the proclivity of patients with RAD51 overexpression to develop distant metastasis. RAD51 is a potential biomarker and attractive drug target for metastatic triple negative breast cancer, with the capability to extend the survival of patients, which is less than 6 months.
Resumo:
Examples of successful fabrication of low-dimensional semiconducting nanomaterials in the Integrated Plasma-Aided Nanofabrication Facility are shown. Self-assembled size-uniform ZnO nanoparticles, ultra-high-aspect ratio Si nanowires, vertically aligned cadmium sulfide nanostructures, and quarternary semiconducting SiCAlN nanomaterial have been synthesized using inductively coupled plasma-assisted RF magnetron sputtering deposition. The observed increase in crystallinity and growth rates of the nanostructures are explained by using a model of plasma-enhanced adatom surface diffusion under conditions of local energy exchange between the ion flux and the growth surface. Issues related to plasma-based growth of low-dimensional semiconducting nanomaterials are discussed as well. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.
Resumo:
Understanding the generation of reactive species in a plasma is an important step towards creating reliable and robust plasma-aided nanofabrication processes. A two-dimensional fluid simulation of the number densities of surface preparation species in a low-temperature, low-pressure, non-equilibrium Ar+H2 plasma is conducted. The operating pressure and H2 partial pressure have been varied between 70-200 mTorr and 0.1-50%, respectively. An emphasis is placed on the application of these results to nanofabrication. A reasonable balance between operating pressures and H 2 partial pressures that would optimize the number densities of the two working units largely responsible for activation and passivation of surface dangling bonds (Ar+ and H respectively) in order to achieve acceptable rates of surface activation and passivation is obtained. It is found that higher operating pressures (150-200 mTorr) and lower H2 partial pressures (∼5%) are required in order to ensure high number densities of Ar+ and H species. This paper contributes to the improvement of the controllability and predictability of plasma-based nanoassembly processes.
Resumo:
A wave propagation in a complex dusty plasma with negative ions was considered. The relevant processes such as ionization, electron attachment, diffusion, positive-negative ion recombination, plasma particle collisions, as well as elastic Coulomb and inelastic dust-charging collisions were taken self-consistently. It was found that the equilibrium of the plasma as well as the propagation of ion waves were modified to various degrees by these effects.
Resumo:
The results of two-dimensional fluid simulation of number densities and fluxes of the main building blocks and surface preparation species involved in nanoassembly of carbon-based nanopatterns in Ar+H2+C2H2 reactive plasmas are reported. It is shown that the process parameters and non-uniformity of surface fluxes of each particular species may affect the targeted nanopattern quality. The results can be used to improve predictability of plasma-aided nanofabrication processes and optimize the parameters of plasma nanotools.KGaA, Weinheim.
Resumo:
Selective and controlled deposition of plasma-grown nanoparticles is one of the pressing problems of plasma-aided nanofabrication. The results of advanced numerical simulations of motion of charge-variable nanoparticles in the plasma presheath and sheath areas and in localized microscopic electric fields created by surface microstructures are reported. Conditions for site-selective deposition of such nanoparticles onto individual microstructures and open surface areas within a periodic micropattern are formulated. The effects of plasma parameters, surface potential, and micropattern features on nanoparticle deposition are investigated and explained using particle charging and plasma force arguments. The results are generic and applicable to a broad range of nanoparticle-generating plasmas and practical problems ranging from management of nanoparticle contamination in microelectronics to site-selective nanoparticle deposition into specified device locations, and synthesis of advanced microporous materials and nanoparticle superlattices. © 2007 American Institute of Physics.
Resumo:
Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C4F8+Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure.