419 resultados para Nominal loads
Resumo:
In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.
Resumo:
An analysis of the emissions from 14 CNG and 5 Diesel buses was conducted during April & May, 2006. Studies were conducted at both steady state and transient driving modes on a vehicle dynamometer utilising a CVS dilution system. This article will focus on the volatile properties of particles from 4 CNG and 4 Diesel vehicles from within this group with a priority given to the previously un-investigated CNG emissions produced at transient loads. Particle number concentration data was collected by three CPC’s (TSI 3022, 3010 & 3782WCPC) having D50 cut-offs set to 5nm, 10nm & 20nm respectively. Size distribution data was collected using a TSI 3080 SMPS with a 3025 CPC during the steady state driving modes. During transient cycles mono-disperse “slices” of between 5nm & 25nm were measured. The volatility of these particles was determined by placing a thermodenuder before the 3022 and the SMPS and measuring the reduction in particle number concentration as the temperature in the thermodenuder was increased. This was then normalised against the total particle count given by the 3010 CPC to provide high resolution information on the reduction in particle concentration with respect to temperature.
Resumo:
Particle emission measurements from a fleet of 14 CNG and 5 Diesel buses were measured both for transient and steady state mode s on a chassis dynamometer with a CVS dilution system. Several transient DT80 cycles and 4 steady sate modes (0, 25, 50 100% of maximum load) were measured for each bus tested. Particle number concentration data was collected by three CPC’s (TSI 3022, 3010 3782WCPC) having D50 cut-offs set to 5, 10 and 20nm respectively. The size distributions were measured with a TSI 3080 SMPS with a 3025 CPC during the steady state modes. Particle mass emissions were measured with a TSI Dustrak. Particle mass emissions for Diesel buses were upto 2 orders of magnitude higher than for CNG buses. Particle number emissions during steady state modes for Diesel busses were 2 to 5 times higher than for CNG busses for all of the tested loads. On the other hand for the DT80 transient cycle particle number emissions were up to 3 times higher for the CNG buses. More detailed analysis of the transient cycles revealed that the reason for this was due to high particle number emissions from CNG busses during the acceleration parts of the cycles. Particles emitted by the CNG busses during acceleration were in the nucleation mode with the majority being smaller than 10nm. Volatility measurements have also shown that they were highly volatile.
Resumo:
In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.
Resumo:
With ever-increasing share of power electronic loads constant power instability is becoming a significant issue in microgrids, especially when they operate in the islanding mode. Transient conditions like resistive load-shedding or sudden increase of constant power loads (CPL) might destabilize the whole system. Modeling and stability analysis of AC microgrids with CPLs have already been discussed in literature. However, no effective solutions are provided to stabilize this kind of system. Therefore, this paper proposes a virtual resistance based active damping method to eliminate constant power instability in AC microgrids. Advantages and limitations of the proposed method are also discussed in detail. Simulation results are presented to validate the proposed active damping solution.
Resumo:
Compared with unidirectional inductive power transfer (UIPT) systems which are suitable for passive loads, bidirectional IPT (BIPT) systems can be used for active loads with power regenerative capability. There are numerous BIPT systems that have been proposed previously to achieve improved performance. However, typical BIPT systems are controlled through modulation of phase-shift of each converter while keeping the relative phase angle between voltages produced by two converters at ± 90 degrees. This paper presents theoretical analysis to show that there is a unique phase shift for each converter at which the inductive coils losses of the system is minimized for a given load. Simulated results of a BIPT system, compensated by CLCL resonant networks, are presented to demonstrate the applicability of the proposed concept and the validity of the mathematical model.
Resumo:
This research provides validated Finite Element techniques to analyse pile foundations under seismic loads. The results show that the capability of the technique to capture the important pile response which includes kinematic and inertial interaction effects, effects of soil stiffness and depth on pile deflection patterns and permanent deformations.
Resumo:
Traditionally, the fire resistance rating of Light gauge steel frame (LSF) wall systems is based on approximate prescriptive methods developed using limited fire tests. These fire tests are conducted using standard fire time-temperature curve given in ISO 834. However, in recent times fire has become a major disaster in buildings due to the increase in fire loads as a result of modern furniture and lightweight construction, which make use of thermoplastics materials, synthetic foams and fabrics. Therefore a detailed research study into the performance of load bearing LSF wall systems under both standard and realistic design fires on one side was undertaken to develop improved fire design rules. This study included both full scale fire tests and numerical studies of eight different LSF wall systems conducted for both the standard fire curve and the recently developed realistic design fire curves. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated and their effects were included. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the fire test and finite element analysis results for various wall configurations, steel grades, thicknesses and load ratios under both standard and realistic design fire conditions. A simplified method was also proposed to predict the fire resistance rating of LSF walls based on two sets of equations developed for the load ratio-hot flange temperature and the time-temperature relationships. This paper presents the details of this study on LSF wall systems under fire conditions and the results.
Resumo:
Cold-formed steel members are often subject to axial compression loads in a range of applications. These thin-walled members can be subject to various types of buckling modes, including flexural-torsional buckling. Design standards provide guidelines for columns subject to flexural-torsional buckling modes at ambient temperature. However, there are no specific design guidelines for elevated temperature conditions. Hence extensive research efforts have gone into the many investigations addressing the flexural-torsional buckling behaviour of cold-formed steel columns at elevated temperatures.This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current ambient temperature Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures by simply using the appropriate elevated temperature mechanical properties. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This research has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses. This paper presents the details of this research study and the results.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.
Resumo:
Capacity measurement and reduction is a major international issue to emerge in the new millennium. However, there has been limited assessment of the success of capacity reduction schemes (CRS). In this paper, the success of a CRS is assessed for a European fishery characterised by differences in efficiency levels of individual boats. In such a fishery, given it is assumed that the least efficient producers are the first to exit through a CRS, the reduction in harvesting capacity is less than the nominal reduction in physical fleet capacity. Further, there is potential for harvesting capacity to increase if remaining vessels improve their efficiency.
Resumo:
The use of gyro-dynamic forces to counteract the wave-induced roll motion of marine vessels in a seaway was proposed over 100 years ago. These early systems showed a remarkable performance, reporting roll reductions of up to 95% in some sailing conditions. Despite this success, further developments were not pursued since the systems were unable to provide acceptable performance over an extended envelope of sailing and environmental conditions, and the invention of fin roll stabilisers provided a satisfactory alternative. This has been attributed to simplistic controls, heavy drive systems, and large structural mass required to withstand the loads given the low strength materials available at the time. Today, advances in material strength, bearings, motor technology and mechanical design methods, together with powerful signal processing algorithms, has resulted in a revitalized interest in gyro-stabilisers for ships. Advanced control systems have enabled optimisation of restoring torques across a range of wave environments and sailing conditions through adaptive control system design. All of these improvements have resulted in increased spinning speed, lower mass, and dramatically increased stabilising performance. This brief paper provides an overview of recent developments in the design and control of gyro-stabilisers of ship roll motion. In particular, the novel Halcyon Gyro-Stabilisers are introduced, and their performance is illustrated based on a simulation case study for a naval patrol vessel. Given the growing national and global interest in small combatants and patrol vessels, modem gyro-stabilisers may offer a significant technological contribution to the age old problem of comfort and mission operability on small ships, especially at loiter speeds.
Resumo:
This report describes results and conclusions from the monitoring component of the Douglas Shire Council (DSC) water quality project. The components of this project that this report addresses are: • Site selection and installation of in-stream and off-paddock automatic water quality monitoring equipment in the Douglas Shire. • Design of appropriate sampling strategies for automatic stations. • Estimation of loads of suspended sediment, total nitrogen and total phosphorus in rivers and also estimation of the changes in nutrient loads from sugar cane under different fertilizer application rates. • Development of a community-based water quality sampling program to complement the automatic sampling efforts. • Design of an optimised, long-term water quality monitoring strategy.
Resumo:
This research treated the response of underground transportation tunnels to surface blast loads using advanced computer simulation techniques. The influences of important parameters, such as tunnel material, geometrical configuration of segments and surrounding soil were investigated. The findings of this research offer significant new information on the blast performance of underground tunnels and will contribute towards future civil engineering applications.