444 resultados para Low harmonics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (∼500) inductively coupled plasmas (ICP) were measured using miniature magnetic probes. A simplified plasma fluid model explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source was proposed. Because of apparent similarity in the procedure of derivation of the pondermotive force-caused nonlinear terms, pronounced generation of the nonlinear static azimuthal magnetic field could be expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organization and dynamic processes of nano/micron-sized solid particles grown in low-temperature chemically active plasmas as well as the associated physico-chemical processes are reviewed. Three specific reactive plasma chemistries, namely, of silane (SiH4), acetylene (C 2H2), and octafluorocyclobutane (c-C4F 8) RF plasma discharges for plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon, hydrogenated and fluorinated carbon films, are considered. It is shown that the particle growth mechanisms and specific self-organization processes in the complex reactive plasma systems are related to the chemical organization and size of the nanoparticles. Correlation between the nanoparticle origin and self-organization in the ionized gas phase and improved thin film properties is reported. Self-organization and dynamic phenomena in relevant reactive plasma environments are studied for equivalent model systems comprising inert buffer gas and mono-dispersed organic particulate powders. Growth kinetics and dynamic properties of the plasma-assembled nanoparticles can be critical for the process quality in microelectronics as well as a number of other industrial applications including production of fine metal or ceramic powders, nanoparticle-unit thin film deposition, nanostructuring of substrates, nucleating agents in polymer and plastics synthesis, drug delivery systems, inorganic additives for sunscreens and UV-absorbers, and several others. Several unique properties of the chemically active plasma-nanoparticle systems are discussed as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that charged dust particles carrying a considerable proportion of the negative charge of a structured magnetized plasma can lead to low-frequency electromagnetic surface waves which otherwise do not exist. The waves are Alfvén-like and propagate across the stationary external magnetic field with a frequency below the ion cyclotron but much above the dust cyclotron frequency. The dispersion characteristics of the modes are obtained and applications to space plasmas discussed. Copyright 1999 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of low-frequency dust-acoustic waves in low-temperature collisional plasmas containing variable-charge impurities is presented. Physical processes such as dust-charge relaxation, ionization-recombination of the electrons and ions, electron and ion elastic collisions with neutrals and dusts, as well as charging collisions with the dusts, are taken into account. Inclusion of these processes allows a balance of the plasma particles and thus a self-consistent determination of the stationary state of the unperturbed plasma. The generalized dispersion relation describing the propagation and damping of the dust acoustic waves is derived and analyzed. © 2000 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The series expansion of the plasma fields and currents in vector spherical harmonics has been demonstrated to be an efficient technique for solution of nonlinear problems in spherically bounded plasmas. Using this technique, it is possible to describe the nonlinear plasma response to the rotating high-frequency magnetic field applied to the magnetically confined plasma sphere. The effect of the external magnetic field on the current drive and field configuration is studied. The results obtained are important for continuous current drive experiments in compact toruses. © 2000 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the 500 KHz planar-coil inductively coupled plasma source was studied. The global electrical characteristics of the discharge, distributions of the induced electromagnetic fields, plasma density, potential, and electron temperature were investigated. Achieved high plasma density and low electron temperature implied that the studied plasma source was promising for industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the process of the resonant second harmonics generation of the submillimeter (SM), which is of interest for design of the semiconductor frequency multipliers is evaluated. Particularly, the possibility to use the semiconductor superlattice-metal structures as an effective second harmonics generator is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix converter (MC) based bi-directional inductive power transfer (BD-IPT) systems are gaining popularity as an efficient and reliable technique with single stage grid integration as opposed to two stage grid integration of conventional grid connected BD-IPT systems. However MCs are invariably rich in harmonics and thus affect both power quality and power factor on the grid side. This paper proposes a mathematical model through which the grid side harmonics of MC based BD-IPT systems can accurately be estimated. The validity of the proposed mathematical model is verified using simulated results of a 3 kW BD-IPT system and results suggest that the MC based BD-IPT systems have a better power factor with higher power quality over conventional grid connected rectifier based systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research led to the discovery of one of the best preserved remnants of the Earth's surficial environment 3.47 billion years ago. These ancient volcanic and sedimentary rocks contain original minerals and textures that are rare in rocks of this age. The research concentrated on chemical analysis of volcanic rocks to differentiate secondary alteration from the primary magmatic signature. This study contributes to our understanding of melting processes and geochemical reservoirs in the early Earth, which is vital for forward modelling of Earth's geodynamic evolution.