376 resultados para UAS Collision Avoidance
Resumo:
In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers.
Resumo:
Previous studies have shown that the human lens contains glycerophospholipids with ether linkages. These lipids differ from conventional glycerophospholipids in that the sn-1 substituent is attached to the glycerol backbone via an 1-O-alkyl or an 1-O-alk-1'-enyl ether rather than an ester bond. The present investigation employed a combination of collision-induced dissociation (CID) and ozone-induced dissociation (OzID) to unambiguously distinguish such 1-O-alkyl and 1-O-alk-1'-enyl ethers. Using these methodologies the human lens was found to contain several abundant 1-O-alkyl glycerophos-phoethanolamines, including GPEtn(16:0e/9Z-18:1), GPEtn(11Z-18:1e/9Z-18:1), and GPEtn(18:0e/9Z-18:1), as well as a related series of unusual 1-O-alkyl glycerophosphoserines, including GPSer(16:0e/9Z-18:1), GPSer(11Z-18:1e/9Z-18:1), GPSer(18:0e/9Z-18:1) that to our knowledge have not previously been observed in human tissue. Isomeric 1-O-alk-1'-enyl ethers were absent or in low abundance. Examination of the double bond position within the phospholipids using OzID revealed that several positional isomers were present, including sites of unsaturation at the n-9, n-7, and even n-5 positions. Tandem CID/OzID experiments revealed a preference for double bonds in the n-7 position of 1-O-ether linked chains, while n-9 double bonds predominated in the ester-linked fatty acids [e.g., GPEtn(11Z-18:1e/9Z-18:1) and GPSer(11Z-18:1e/9Z-18:1)]. Different combinations of these double bond positional isomers within chains at the sn-1 and sn-2 positions point to a remarkable molecular diversity of ether-lipids within the human lens.
Resumo:
Contemporary lipidomics protocols are dependent on conventional tandem mass spectrometry for lipid identification. This approach is extremely powerful for determining lipid class and identifying the number of carbons and the degree of unsaturation of any acyl-chain substituents. Such analyses are however, blind to isomeric variants arising from different carbon carbon bonding motifs within these chains including double bond position, chain branching, and cyclic structures. This limitation arises from the fact that conventional, low energy collision-induced dissociation of even-electron lipid ions does not give rise to product ions from intrachain fragmentation of the fatty acyl moieties. To overcome this limitation, we have applied radical-directed dissociation (RDD) to the study of lipids for the first time. In this approach, bifunctional molecules that contain a photocaged radical initiator and a lipid-adducting group, such as 4-iodoaniline and 4-iodobenzoic acid, are used to form noncovalent complexes (i.e., adduct ions) with a lipid during electrospray ionization. Laser irradiation of these complexes at UV wavelengths (266 nm) cleaves the carbon iodine bond to liberate a highly reactive phenyl radical. Subsequent activation of the nascent radical ions results in RDD with significant intrachain fragmentation of acyl moieties. This approach provides diagnostic fragments that are associated with the double bond position and the positions of chain branching in glycerophospholipids, sphingomyelins and triacylglycerols and thus can be used to differentiate isomeric lipids differing only in such motifs. RDD is demonstrated for well-defined lipid standards and also reveals lipid structural diversity in olive oil and human very-low density lipoprotein.
Resumo:
Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including \[M + H](+), \[M + Li](+), \[M + Na](+), and \[M H](-): in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.
Resumo:
Ion-molecule reactions between molecular oxygen and peptide radicals in the gas phase demonstrate that radical migration occurs easily within large biomolecules without addition of collisional activation energy.
Resumo:
An accumulator based on bilinear pairings was proposed at CT-RSA'05. Here, it is first demonstrated that the security model proposed by Lan Nguyen does lead to a cryptographic accumulator that is not collision resistant. Secondly, it is shown that collision-resistance can be provided by updating the adversary model appropriately. Finally, an improvement on Nguyen's identity escrow scheme, with membership revocation based on the accumulator, by removing the trusted third party is proposed.
Resumo:
In this article, we study the security of the IDEA block cipher when it is used in various simple-length or double-length hashing modes. Even though this cipher is still considered as secure, we show that one should avoid its use as internal primitive for block cipher based hashing. In particular, we are able to generate instantaneously free-start collisions for most modes, and even semi-free-start collisions, pseudo-preimages or hash collisions in practical complexity. This work shows a practical example of the gap that exists between secret-key and known or chosen-key security for block ciphers. Moreover, we also settle the 20-year-old standing open question concerning the security of the Abreast-DM and Tandem-DM double-length compression functions, originally invented to be instantiated with IDEA. Our attacks have been verified experimentally and work even for strengthened versions of IDEA with any number of rounds.
Resumo:
We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.
Resumo:
Deprotonated o, m-, and p-methoxyacetanilide show pronounced peaks in their collision-induced tandem mass spectra (MS/MS) produced by losses of the elements of C2H6. It is proposed that this reaction is a 'cross-ring' internal S(N)2 reaction involving an incipient methyl anion. For example, p-CH3O-C6H4-N--CO-CH3--> [(p.CH3O-C6H4-N=C=O)CH3-]--> O---C6H4-N=C=O+C2H6.
Resumo:
Neutral C3O has been prepared by collision induced neutralisation of the precursor radical anion formed by the reaction C-=C-CO-OEt --> C3O-. +EtO. . The similar neutralisaaion reionisation (-NR+) and charge reversal (CR) spectra of C3O-. indicate that the potential surfaces of C3O and C3O+. show favourable vertical Franck-Condon overlap, This suggests that the bond connectivities of anion, neutral and cation C3O are the same. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Long-range cross-ring reactions are of minor importance in the collision-induced mass spectra (MS/MS) of [M - H]- ions of CH2OCO-C6H4-NHCOR systems: e.g. the loss of 'CD3CO2CH3' from CH3OCO-C6H4-(N) over bar COCD3. Major processes involve (i) losses of radicals to form stable radical anions, e.g. loss of a ring hydrogen atom and losses from the ester (CH3 ., CH3O . and . CO2CH3), (ii) losses of neutral molecules from the amide moiety [e.g. CO (R = H) and CH2CO (R = CH3), and proximity effects when the two substituents are ortho [e.g. loss of (CH3OD+CO2) from o-CH3OCO-C6H4 (N) over bar COCD3].
Resumo:
In order to assist with the development of more selective and sensitive methods for thyroid hormone analysis the \[M-H](-) anions of the iodothyronines T4, T3, rT3, (3,5)-T2 and the non-iodinated thyronine (TO) have been generated by negative ion electrospray mass spectrometry. Tandem mass spectra of these ions were recorded on a triple-quadrupole mass spectrometer and show a strong analogy with the fragmentation pathways of the parent compound, tyrosine. All iodothyronines also show significant abundances of the iodide anion in their tandem mass spectra, which represents an attractive target for multiple reaction monitoring (MRM) analysis, given that iodothyronines are the only iodine bearing endogenous molecules. Characteristic fragments are observed at m/z 359.7 and 604.5 for rT3 but are absent in the spectrum of T3, thus differentiating the two positional isomers. The striking difference in the fragmentation patterns of these regioisomeric species is attributed to the increased acidity of the phenol moiety in rT3 compared with T3. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
2,3-Dimethyl-2,3-dinitrobutane (DMNB) is an explosive taggant added to plastic explosives during manufacture making them more susceptible to vapour-phase detection systems. In this study, the formation and detection of gas-phase \[M+H](+), \[M+Li](+), \[M+NH(4)](+) and \[M+Na](+) adducts of DMNB was achieved using electrospray ionisation on a triple quadrupole mass spectrometer. The \[M+H](+) ion abundance was found to have a strong dependence on ion source temperature, decreasing markedly at source temperatures above 50 degrees C. In contrast, the \[M+Na](+) ion demonstrated increasing ion abundance at source temperatures up to 105 degrees C. The relative susceptibility of DMNB adduct ions toward dissociation was investigated by collision-induced dissociation. Probable structures of product ions and mechanisms for unimolecular dissociation have been inferred based on fragmentation patterns from tandem mass (MS/MS) spectra of source-formed ions of normal and isotopically labelled DMNB, and quantum chemical calculations. Both thermal and collisional activation studies suggest that the \[M+Na](+) adduct ions are significantly more stable toward dissociation than their protonated analogues and, as a consequence, the former provide attractive targets for detection by contemporary rapid screening methods such as desorption electrospray ionisation mass spectrometry. Copyright (C) 2009 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
High valent metal(IV)-oxo species, \[M(=O)(Melm)(n)(OAc)](+) (M = Mn-Ni, MeIm = 1-methylimidazole, n = 1-2), which are relevant to biology and oxidative catalysis, were produced and isolated in gas-phase reactions of the metal(II) precursor ions \[M(MeIm)(n)(OAc)](+) (M = Mn-Zn, n = 1-3) with ozone. The precursor ions \[M(MeIm)(OAc)](+) and \[M(MeIm)(2)(OAc)](+) were generated via collision-induced dissociation of the corresponding \[M(MeIm)(3)(OAc)](+) ion. The dependence of ozone reactivity on metal and coordination number is discussed. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Background. Volitional risky driving behaviours such as drink- and drug-driving (i.e. substance-impaired driving) and speeding contribute to the overrepresentation of young novice drivers in road crash fatalities, and crash risk is greatest during the first year of independent driving in particular. Aims. To explore the: 1) self-reported compliance of drivers with road rules regarding substance-impaired driving and other risky driving behaviours (e.g., speeding, driving while tired), one year after progression from a Learner to a Provisional (intermediate) licence; and 2) interrelationships between substance-impaired driving and other risky driving behaviours (e.g., crashes, offences, and Police avoidance). Methods. Drivers (n = 1,076; 319 males) aged 18-20 years were surveyed regarding their sociodemographics (age, gender) and self-reported driving behaviours including crashes, offences, Police avoidance, and driving intentions. Results. A relatively small proportion of participants reported driving after taking drugs (6.3% of males, 1.3% of females) and drinking alcohol (18.5% of males, 11.8% of females). In comparison, a considerable proportion of participants reported at least occasionally exceeding speed limits (86.7% of novices), and risky behaviours like driving when tired (83.6% of novices). Substance-impaired driving was associated with avoiding Police, speeding, risky driving intentions, and self-reported crashes and offences. Forty-three percent of respondents who drove after taking drugs also reported alcohol-impaired driving. Discussion and Conclusions. Behaviours of concern include drink driving, speeding, novice driving errors such as misjudging the speed of oncoming vehicles, violations of graduated driver licensing passenger restrictions, driving tired, driving faster if in a bad mood, and active punishment avoidance. Given the interrelationships between the risky driving behaviours, a deeper understanding of influential factors is required to inform targeted and general countermeasure implementation and evaluation during this critical driving period. Notwithstanding this, a combination of enforcement, education, and engineering efforts appear necessary to improve the road safety of the young novice driver, and for the drink-driving young novice driver in particular.