391 resultados para Size reduction
Resumo:
The high priority of monitoring workers exposed to nitrobenzene is a consequence of clear findings of experimental carcinogenicity of nitrobenzene and the associated evaluations by the International Agency for Research on Cancer. Eighty male employees of a nitrobenzene reduction plant, with potential skin contact with nitrobenzene and aniline, participated in a current medical surveillance programme. Blood samples were routinely taken and analysed for aniline, 4-aminodiphenyl (4-ADP) and benzidine adducts of haemoglobin (Hb) and human serum albumin (HSA). Also, levels of methaemoglobin (Met-Hb) and of carbon monoxide haemoglobin (CO-Hb) were monitored. Effects of smoking were straightforward. Using the rank sum test of Wilcoxon, we found that very clear-cut and statistically significant smoking effects (about 3-fold increases) were apparent on CO-Hb (P = 0.00085) and on the Hb adduct of 4-ADP (P = 0.0006). The mean aniline-Hb adduct level in smokers was 1.5 times higher than in non-smokers; the significance (P = 0.05375) was close to the 5% level. The strongest correlation was evident between the Hb and HSA adducts of aniline (rs = 0.846). Less pronounced correlations (but with P values < 0.02) appeared between aniline-Hb and 4-ADP-Hb adducts (rs = 0.388), between 4-ADP and 4-ADP-HSA adducts (rs = 0.373), and between 4-ADP-Hb and aniline-HSA adducts (rs = 0.275). In view of the proposal for additional use of the aniline-HSA adduct for biological monitoring, particularly in cases of acute overexposures or poisonings, the strong correlation of the Hb and HSA conjugates is noteworthy; the ratio aniline-HSA:aniline-Hb was 1:42 for the entire cohort.
Resumo:
The properties of CdS nanoparticles incorporated onto mesoporous TiO2 films by a successive ionic layer adsorption and reaction (SILAR) method were investigated by Raman spectroscopy, UV-visible spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). High resolution TEM indicated that the synthesized CdS particles were hexagonal phase and the particle sizes were less than 5 nm when SILAR cycles were fewer than 9. Quantum size effect was found with the CdS sensitized TiO2 films prepared with up to 9 SILAR cycles. The band gap of CdS nanoparticles decreased from 2.65 eV to 2.37 eV with the increase of the SILAR cycles from 1 to 11. The investigation of the stability of the CdS/TiO2 films in air under illumination (440.6 µW/cm2) showed that the photodegradation rate was up to 85% per day for the sample prepared with 3 SILAR cycles. XPS analysis indicated that the photodegradation was due to the oxidation of CdS, leading to the transformation from sulphide to sulphate (CdSO4). Furthermore, the degradation rate was strongly dependent upon the particle size of CdS. Smaller particles showed faster degradation rate. The size-dependent photo-induced oxidization was rationalized with the variation of size-dependent distribution of surface atoms of CdS particles. Molecular Dynamics (MD) simulation has indicated that the surface sulphide anion of a large CdS particle such as CdS made with 11 cycles (CdS11, particle size = 5.6 nm) accounts for 9.6% of the material whereas this value is increased to 19.2% for (CdS3) based smaller particles (particle size: 2.7 nm). Nevertheless, CdS nanoparticles coated with ZnS material showed a significantly enhanced stability under illumination in air. A nearly 100% protection of CdS from photon induced oxidation with a ZnS coating layer prepared using four SILAR cycles, suggesting the formation of a nearly complete coating layer on the CdS nanoparticles.
Resumo:
Recent data highlighted the association between penetration of antiretrovirals in the central nervous system (CNS) and neurocognitive impairment in HIVpositive patients. Existing antiretrovirals have been ranked according to a score of neuropenetration, which was shown to be a predictor of anti-HIVactivity in the CNS and improvement of neurocognitive disorders [1]. Main factors affecting drug penetration are known to be protein binding, lipophilicity and molecular weight [2]. Moreover, active translation by membrane transporters (such as p-glycoprotein) could be a key mechanism of passage [3]. The use of raltegravir (RGV), a novel antiretroviral drug targeted to inhibit the HIV preintegrase complex, is increasing worldwide due to its efficacy and tolerability. However, penetration of RGV in the CNS has not been yet elucidated. In fact, prediction of RGV neuropenetration according to molecular characteristics is controversial. Intermediate protein binding (83%) and large volume of distribution (273 l) could suggest a high distribution beyond extracellular spaces [4]. On the contrary, low lipophilicity (oil/water partition coefficient at pH 7.4 of 2.80) and intermediate molecular weight (482.51 Da) suggest a limited diffusion. Furthermore, in-vitro studies suggest that RGV is substrate of p-glycoprotein, although this efflux pump has not been identified to significantly affect plasma pharmacokinetics [5]. In any case, no data concerning RGV passage into cerebrospinal fluid of animals or humans have yet been published.
Resumo:
Capacity measurement and reduction is a major international issue to emerge in the new millennium. However, there has been limited assessment of the success of capacity reduction schemes (CRS). In this paper, the success of a CRS is assessed for a European fishery characterised by differences in efficiency levels of individual boats. In such a fishery, given it is assumed that the least efficient producers are the first to exit through a CRS, the reduction in harvesting capacity is less than the nominal reduction in physical fleet capacity. Further, there is potential for harvesting capacity to increase if remaining vessels improve their efficiency.
Resumo:
This study examines the role that the size of a victimised organisation and the size of the victim’s loss have on attitudes regarding the acceptance or unacceptance of 12 questionable consumer actions. A sample of 815 American adults rated each scenario on a scale anchored by very acceptable and very unacceptable. It was shown that the size of the victimised organisation tends to influence consumers’ opinions with more disdain directed towards consumers who take advantage of smaller businesses. Similarly, the respondents tended to be more critical of these actions when the loss incurred by the victimised organisation was large. A 2x2 matrix concurrently delineated the nature of the extent to which opinions regarding the 12 actions differed depending upon the mediating variable under scrutiny.
Resumo:
Deterrence strategies for deviant consumer behavior are criticised for their ‘one size fits all’ approach. In two studies, this paper examines how the size of harm and size of victim influences consumer perceptions of deviant consumer behavior. Deterrence strategies are recommended that overcome the differences in consumer perceptions of deviance.
Resumo:
Purpose: The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. Materials and methods: The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (137Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. Results: The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. Conclusions: These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.
Resumo:
Solid medications are often crushed and mixed with food or thickened water to aid drug delivery for those who cannot or prefer not to swallow whole tablets or capsules. Dysphagic patients have the added problem of being unable to safely swallow thin fluids so water thickened with polysaccharides is used to deliver crushed medications and ensure safe swallowing. It is postulated that these polysaccharide systems may restrict drug release by reducing the diffusion of the drug into gastric fluids. METHODS By using a vertical diffusion cell separated with a synthetic membrane, the diffusion of a model drug (atenolol) was studied from a donor system containing the drug dispersed into thickened water with xanthan gum (concentration range from 0.005%-2.2%) into a receptor system containing simulated gastric fluid (SGF) at 37°C. The amount of drug transferred was measured over 8 hours and diffusion coefficients estimated using the Higuchi model approach. RESULTS Atenolol diffusion decreased with increasing xanthan gum concentration up to 1.0%, above which diffusion remained around 300 μ2s-1. The rheological measurements captured the influence of the structure and conformation of the polysaccharide in water on the movement and availability of the drug in SGF. DISCUSSION Dose form administration for dysphagic patients’ needs special attention from general practitioners, pharmacist and patients. Improving drug release of crushed tablets from thickening agents requires a reduction in the diffusion pathway (e.g. by decreasing drop size radius). This approach could make the drug available in SGF in a short time without compromising the mechanical aspects of thickening agents that guarantee safe swallowing.
Resumo:
Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.
Resumo:
Brain size in vertebrates varies principally with body size. Although many studies have examined the variation of brain size in birds, there is little information on Palaeognaths, which include the ratite lineage of kiwi, emu, ostrich and extinct moa, as well as the tinamous. Therefore, we set out to determine to what extent the evolution of brain size in Palaeognaths parallels that of other birds, i. e., Neognaths, by analyzing the variation in the relative sizes of the brain and cerebral hemispheres of several species of ratites and tinamous. Our results indicate that the Palaeognaths possess relatively smaller brains and cerebral hemispheres than the Neognaths, with the exception of the kiwi radiation (Apteryx spp.). The external morphology and relatively large size of the brain of Apteryx, as well as the relatively large size of its telencephalon, contrast with other Palaeognaths, including two species of historically sympatric moa, suggesting that unique selective pressures towards increasing brain size accompanied the evolution of kiwi. Indeed, the size of the cerebral hemispheres with respect to total brain size of kiwi is rivaled only by a handful of parrots and songbirds, despite a lack of evidence of any advanced behavioral/ cognitive abilities such as those reported for parrots and crows. In addition, the enlargement in brain and telencephalon size of the kiwi occurs despite the fact that this is a precocial bird. These findings form an exception to, and hence challenge, the current rules that govern changes in relative brain size in birds. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1 × lithography and the shortage in enduser generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm. © 2011 SPIE.