328 resultados para Information Retrieval, Document Databases, Digital Libraries
Resumo:
Discharge summaries and other free-text reports in healthcare transfer information between working shifts and geographic locations. Patients are likely to have difficulties in understanding their content, because of their medical jargon, non-standard abbreviations,and ward-specific idioms. This paper reports on an evaluation lab with an aim to support the continuum of care by developing methods and resources that make clinical reports in English easier to understand for patients, and which helps them in finding information related to their condition.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work supplements rule-based reasoning with case based reasoning and intelligent information retrieval. This research, specifies an approach to the case based retrieval problem which relies heavily on an extended object-oriented / rule-based system architecture that is supplemented with causal background information. Machine learning techniques and a distributed agent architecture are used to help simulate the reasoning process of lawyers. In this paper, we outline our implementation of the hybrid IKBALS II Rule Based Reasoning / Case Based Reasoning system. It makes extensive use of an automated case representation editor and background information.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.
Resumo:
This thesis developed new search engine models that elicit the meaning behind the words found in documents and queries, rather than simply matching keywords. These new models were applied to searching medical records: an area where search is particularly challenging yet can have significant benefits to our society.
Resumo:
Novelty-biased cumulative gain (α-NDCG) has become the de facto measure within the information retrieval (IR) community for evaluating retrieval systems in the context of sub-topic retrieval. Setting the incorrect value of parameter α in α-NDCG prevents the measure from behaving as desired in particular circumstances. In fact, when α is set according to common practice (i.e. α = 0.5), the measure favours systems that promote redundant relevant sub-topics rather than provide novel relevant ones. Recognising this characteristic of the measure is important because it affects the comparison and the ranking of retrieval systems. We propose an approach to overcome this problem by defining a safe threshold for the value of α on a query basis. Moreover, we study its impact on system rankings through a comprehensive simulation.
Resumo:
Semantic space models of word meaning derived from co-occurrence statistics within a corpus of documents, such as the Hyperspace Analogous to Language (HAL) model, have been proposed in the past. While word similarity can be computed using these models, it is not clear how semantic spaces derived from different sets of documents can be compared. In this paper, we focus on this problem, and we revisit the proposal of using semantic subspace distance measurements [1]. In particular, we outline the research questions that still need to be addressed to investigate and validate these distance measures. Then, we describe our plans for future research.
Resumo:
Semantic Space models, which provide a numerical representation of words’ meaning extracted from corpus of documents, have been formalized in terms of Hermitian operators over real valued Hilbert spaces by Bruza et al. [1]. The collapse of a word into a particular meaning has been investigated applying the notion of quantum collapse of superpositional states [2]. While the semantic association between words in a Semantic Space can be computed by means of the Minkowski distance [3] or the cosine of the angle between the vector representation of each pair of words, a new procedure is needed in order to establish relations between two or more Semantic Spaces. We address the question: how can the distance between different Semantic Spaces be computed? By representing each Semantic Space as a subspace of a more general Hilbert space, the relationship between Semantic Spaces can be computed by means of the subspace distance. Such distance needs to take into account the difference in the dimensions between subspaces. The availability of a distance for comparing different Semantic Subspaces would enable to achieve a deeper understanding about the geometry of Semantic Spaces which would possibly translate into better effectiveness in Information Retrieval tasks.
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2008 evaluation campaign, which consisted of a wide range of tracks: Ad hoc, Book, Efficiency, Entity Ranking, Interactive, QA, Link the Wiki, and XML Mining.
Resumo:
This paper conceptualizes a framework for bridging the BIM-Specifications divide by embedding project-specific information in BIM objects by means of a product library. We demonstrate how model information, enriched with data at various levels of development (LODs), can evolve simultaneously with design and construction using a window object embedded in a wall as life-cycle phase exemplars at different levels of granularity. The conceptual approach is informed by the need for exploring an approach that takes cognizance of the limitations of current modelling tools in enhancing the information content of BIM models. Therefore, this work attempts to answer the question, “How can the modelling of building information be enhanced throughout the life-cycle phases of buildings utilizing building specification information?”
Resumo:
The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.
Resumo:
In today’s world of information-driven society, many studies are exploring usefulness and ease of use of the technology. The research into personalizing next-generation user interface is also ever increasing. A better understanding of factors that influence users’ perception of web search engine performance would contribute in achieving this. This study measures and examines how users’ perceived level of prior knowledge and experience influence their perceived level of satisfaction of using the web search engines, and how their perceived level of satisfaction affects their perceived intention to reuse the system. 50 participants from an Australian university participated in the current study, where they performed three search tasks and completed survey questionnaires. A research model was constructed to test the proposed hypotheses. Correlation and regression analyses results indicated a significant correlation between (1) users’ prior level of experience and their perceived level of satisfaction in using the web search engines, and (2) their perceived level of satisfaction in using the systems and their perceived intention to reuse the systems. A theoretical model is proposed to illustrate the causal relationships. The implications and limitations of the study are also discussed.
Resumo:
Reputation systems are employed to provide users with advice on the quality of items on the Web, based on the aggregated value of user-based ratings. Recommender systems are used online to suggest items to users according to the users, expressed preferences. Yet, recommender systems will endorse an item regardless of its reputation value. In this paper, we report the incorporation of reputation models into recommender systems to enhance the accuracy of recommendations. The proposed method separates the implementation of recommender and reputation systems for generality. Our experiment showed that the proposed method could enhance the accuracy of existing recommender systems.
A tag-based personalized item recommendation system using tensor modeling and topic model approaches
Resumo:
This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment
Resumo:
With the overwhelming increase in the amount of data on the web and data bases, many text mining techniques have been proposed for mining useful patterns in text documents. Extracting closed sequential patterns using the Pattern Taxonomy Model (PTM) is one of the pruning methods to remove noisy, inconsistent, and redundant patterns. However, PTM model treats each extracted pattern as whole without considering included terms, which could affect the quality of extracted patterns. This paper propose an innovative and effective method that extends the random set to accurately weigh patterns based on their distribution in the documents and their terms distribution in patterns. Then, the proposed approach will find the specific closed sequential patterns (SCSP) based on the new calculated weight. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms other state-of-the-art methods in different popular measures.