465 resultados para 3D Interaction
Resumo:
This thesis developed a method for real-time and handheld 3D temperature mapping using a combination of off-the-shelf devices and efficient computer algorithms. It contributes a new sensing and data processing framework to the science of 3D thermography, unlocking its potential for application areas such as building energy auditing and industrial monitoring. New techniques for the precise calibration of multi-sensor configurations were developed, along with several algorithms that ensure both accurate and comprehensive surface temperature estimates can be made for rich 3D models as they are generated by a non-expert user.
Resumo:
Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.
Resumo:
This paper uses finite element techniques to investigate the performance of buried tunnels subjected to surface blasts incorporating fully coupled Fluid Structure Interaction and appropriate material models which simulate strain rate effects. Modelling techniques are first validated against existing experimental results and then used to treat the blast induced shock wave propagation and tunnel response in dry and saturated sands. Results show that the tunnel buried in saturated sand responds earlier than that in dry sand. Tunnel deformations decrease with distance from explosive in both sands, as expected. In the vicinity of the explosive, the tunnel buried in saturated sand suffered permanent deformation in both axial and circumferential directions, whereas the tunnel buried in dry sand recovered from most of the axial deformation. Overall, response of the tunnel in saturated sand is more severe for a given blast event and shows the detrimental effect of pore water on the blast response of buried tunnels. The validated modelling techniques developed in this paper can be used to investigate the blast response of tunnels buried in dry and saturated sands.
Resumo:
Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD) and has been shown to be associated with severe clinical manifestation. Currently, there is no antiviral therapeutic for the treatment of HFMD patients owing to a lack of understanding of EV71 pathogenesis. This study seeks to elucidate the transcriptomic changes that result from EV71 infection. Human whole genome microarray was employed to monitor changes in genomic profiles between infected and uninfected cells. The results reveal altered expression of human genes involved in critical pathways including the immune response and the stress response. Together, data from this study provide valuable insights into the host–pathogen interaction between human colorectal cells and EV71.
Resumo:
This thesis describes the development and scientific validation of a real-time quantitative 3D flat-bed ultrasound scanner. Novel short-time Fourier transform software facilitated broadband ultrasound attenuation maps of a breast phantom, enabling detection and identification of both cystic and solid lesions.
Resumo:
In this position paper we draw from critical approaches to the concept of habit from cultural theory to argue that considering the sociality of everyday objects might be productive for understanding and designing for habituated interaction within the emerging Internet of Things.
Resumo:
Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across 5 centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity-modulated radiotherapy (IMRT) and 47 treated with volumetric-modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organ-at-risk sparing, through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each organ-at-risk. Statistical significance was evaluated using two-tailed Welch’s T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the organs-at-risk: with increased compliance with recommended organ-at-risk dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.
Resumo:
Rail steel bridges are vulnerable to high impact forces due to the passage of trains; unfortunately the determination of these transient impact forces is not straightforward as these are affected by a large number of parameters, including the wagon design, the wheel-rail contact and the design parameters of the bridge deck and track, as well as the operational parameters – wheel load and speed. To determine these impact forces, a detailed rail train-track/bridge dynamic interaction model has been developed, which includes a comprehensive train model using multi-body dynamics approach and a flexible track/bridge model using Euler– Bernoulli beam theory. Single and multi-span bridges have been modelled to examine their dynamic characteristics. From the single span bridge, the train critical speed is determined; the minimum distance of two peak loadings is found to affect the train critical speed. The impact factor and the dynamic characteristics are discussed.
Resumo:
User-generated content plays a pivotal role in the current social media. The main focus, however, has been on the explicitly generated user content such as photos, videos and status updates on different social networking sites. In this paper, we explore the potential of implicitly generated user content, based on users’ online consumption behaviors. It is technically feasible to record users’ consumption behaviors on mobile devices and share that with relevant people. Mobile devices with such capabilities could enrich social interactions around the consumed content, but it may also threaten users’ privacy. To understand the potentials of this design direction we created and evaluated a low-fidelity prototype intended for photo sharing within private groups. Our prototype incorporates two design concepts, namely, FingerPrint and MoodPhotos that leverage users’ consumption history and emotional responses. In this paper, we report user values and user acceptance of this prototype from three participatory design workshops.
Resumo:
This paper discusses the idea and demonstrates an early prototype of a novel method of interacting with security surveillance footage using natural user interfaces in place of traditional mouse and keyboard interaction. Current surveillance monitoring stations and systems provide the user with a vast array of video feeds from multiple locations on a video wall, relying on the user’s ability to distinguish locations of the live feeds from experience or list based key-value pair of location and camera IDs. During an incident, this current method of interaction may cause the user to spend increased amounts time obtaining situational and location awareness, which is counter-productive. The system proposed in this paper demonstrates how a multi-touch screen and natural interaction can enable the surveillance monitoring station users to quickly identify the location of a security camera and efficiently respond to an incident.
Resumo:
The article introduces a novel platform for conducting controlled and risk-free driving and traveling behavior studies, called Cyber-Physical System Simulator (CPSS). The key features of CPSS are: (1) simulation of multiuser immersive driving in a threedimensional (3D) virtual environment; (2) integration of traffic and communication simulators with human driving based on dedicated middleware; and (3) accessibility of multiuser driving simulator on popular software and hardware platforms. This combination of features allows us to easily collect large-scale data on interesting phenomena regarding the interaction between multiple user drivers, which is not possible with current single-user driving simulators. The core original contribution of this article is threefold: (1) we introduce a multiuser driving simulator based on DiVE, our original massively multiuser networked 3D virtual environment; (2) we introduce OpenV2X, a middleware for simulating vehicle-to-vehicle and vehicle to infrastructure communication; and (3) we present two experiments based on our CPSS platform. The first experiment investigates the “rubbernecking” phenomenon, where a platoon of four user drivers experiences an accident in the oncoming direction of traffic. Second, we report on a pilot study about the effectiveness of a Cooperative Intelligent Transport Systems advisory system.
Resumo:
We explored the mediation effect of caregiver self-efficacy on the influences of behavioral and psychological symptoms (BPSD) of dementia care recipients (CRs) or family caregivers’ (CGs) social supports (informational, tangible and affectionate support and positive social interaction) on CGs’ mental health. We interviewed 196 CGs, using a battery of measures including demographic data of the dyads, CRs’ dementia-related impairments, and CGs’ social support, self-efficacy and the Medical Outcome Study (MOS) Short-Form (SF-36) Health Survey. Multiple regression analyses showed that gathering information on self-efficacy and managing CG distress self-efficacy were the partial mediators of the relationship between positive social interaction and CG mental health. Managing caregiving distress self-efficacy also partial mediated the impact of BPSD on CG mental health. We discuss implications of the results for improving mental health of the target population in mainland China.
Resumo:
The concept of affordance has different interpretations in the field of Human-Computer Interaction (HCI). However, its treatment has been merely as a one-to-one relationship between a user and a technology. We believe that a broader view of affordances is needed which encompasses social and cultural aspects of our everyday life. We propose an interaction-centered view of affordance that can be useful for developing better understandings of designed artefacts. An interaction-centered view of affordance suggests that affordance is an interpretative relationship between users and the technology that emerges during the users' interaction with the technology in the lived environments. We distinguish two broad classes of affordances: affordance in Information and affordance in Articulation. Affordance in information refers to users' understanding of a technology based on their semantic and syntactic interpretation; and affordance in articulation refers to users' interpretations about the use of the technology. We also argue that the notion of affordance should be treated at two levels: at the 'artefact level' and at the 'practice level'. Consequently, we provide two examples to demonstrate our arguments.
Resumo:
Two sources of uncertainty in the X ray computed tomography imaging of polymer gel dosimeters are investigated in the paper.The first cause is a change in postirradiation density, which is proportional to the computed tomography signal and is associated with a volume change. The second cause of uncertainty is reconstruction noise.A simple technique that increases the residual signal to noise ratio by almost two orders of magnitude is examined.
Resumo:
In this paper we describe the design of DNA Jewellery, which is a wearable tangible data representation of personal DNA profile data. An iterative design process was followed to develop a 3D form-language that could be mapped to standard DNA profile data, with the aim of retaining readability of data while also producing an aesthetically pleasing and unique result in the area of personalized design. The work explores design issues with the production of data tangibles, contributes to a growing body of research exploring tangible representations of data and highlights the importance of approaches that move between technology, art and design.