352 resultados para maximum pseudolikelihood (MPL) estimation
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.
Resumo:
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung.
Resumo:
The maximum principle for the space and time–space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time–space Riesz–Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor–corrector method combining the L1 and L2 discrete schemes, we present a numerical method for the specified equation. Two examples are given to illustrate the obtained results.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
Height is a critical variable for helicopter hover control. In this paper we discuss, and present experimental results for, two different height sensing techniques: ultrasonic and stereo imaging, which have complementary characteristics. Feature-based stereo is used which provides a basis for visual odometry and attitude estimation in the future.
Resumo:
It is traditional to initialise Kalman filters and extended Kalman filters with estimates of the states calculated directly from the observed (raw) noisy inputs, but unfortunately their performance is extremely sensitive to state initialisation accuracy: good initial state estimates ensure fast convergence whereas poor estimates may give rise to slow convergence or even filter divergence. Divergence is generally due to excessive observation noise and leads to error magnitudes that quickly become unbounded (R.J. Fitzgerald, 1971). When a filter diverges, it must be re initialised but because the observations are extremely poor, re initialised states will have poor estimates. The paper proposes that if neurofuzzy estimators produce more accurate state estimates than those calculated from the observed noisy inputs (using the known state model), then neurofuzzy estimates can be used to initialise the states of Kalman and extended Kalman filters. Filters whose states have been initialised with neurofuzzy estimates should give improved performance by way of faster convergence when the filter is initialised, and when a filter is re started after divergence
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.
Resumo:
Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.