344 resultados para intelligent speed adaptation
Resumo:
In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.
Resumo:
A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
This research project evaluated the biomechanical and functional outcomes of patients following total knee replacement measured at 6 and 12 months following surgery. Using more objective measures, patients were examined to determine changes in biomechanical and neuromuscular function during performance of activities of daily living such as walking, stair climbing and turning. Adaptations in joint positioning and performance were identified and progressive improvements were made in some areas of locomotor function. The findings of the study provided important objective information to contribute to the design and evaluation of prostheses, new surgical and rehabilitation procedures and improved recovery of patients.
Resumo:
Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound,Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range–Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range–Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range–Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.
Resumo:
Aggressive driving has been associated with engagement in other risky driving behaviours, such as speeding; while drivers using their mobile phones have an increased crash risk, despite the tendency to reduce their speed. Research has amassed separately for mobile phone use and aggressive driving among younger drivers, however little is known about the extent to which these behaviours may function independently and in combination to influence speed selection behaviour. The main aim of the current study was to investigate the effect of driver aggression (measured by the Driving Anger Expression Inventory) and mobile phone use on speed selection by young drivers. The CARRS-Q advanced driving simulator was used to test the speed selection of drivers aged 18 to 26 years (N = 32) in a suburban (60kph zone) driving context. A 2 (level of driving anger expression: low, high) X 3 (mobile phone use condition: baseline, hands-free, hand-held) mixed factorial ANOVA was conducted with speed selection as the dependent variable. Results revealed a significant main effect for mobile phone use condition such that speed selection was lowest for the hand-held condition and highest for the baseline condition. Speed selection, however, was not significantly different across the levels of driving anger expression; nor was there a significant interaction effect between the mobile phone use and driving anger expression. As young drivers are over-represented in road crash statistics, future research should further investigate the combined impact of driver aggression and mobile phone use on speed selection.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. Such systems, however, will only exert an influence on driving behaviour if they are accepted by the driver. This study aimed at assessing driver acceptance of different ITS interventions designed to enhance driver behaviour at railway crossings. Fifty eight participants, divided into three groups, took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver acceptance of each ITS intervention was assessed in a questionnaire guided by the Technology Acceptance Model and the Theory of Planned Behaviour. Overall, results indicated that the strongest intentions to use the ITS devices belonged to participants exposed to the road-based valet system at passive crossings. The utility of both models in explaining drivers’ intention to use the systems is discussed, with results showing greater support for the Theory of Planned Behaviour. Directions for future studies, along with strategies that target attitudes and subjective norms to increase drivers’ behavioural intentions, are also discussed.
Resumo:
This chapter takes as its central premise the human capacity to adapt to changing environments. It is an idea that is central to complexity theory but receives only modest attention in relation to learning. To do this we will draw from a range of fields and then consider some recent research in motor control that may extend the discussion in ways not yet considered, but that will build on advances already made within pedagogy and motor control synergies. Recent work in motor control indicates that humans have far greater capacity to adapt to the ‘product space’ than was previously thought, mainly through fast heuristics and on-line corrections. These are changes that can be made in real (movement) time and are facilitated by what are referred to as ‘feed-forward’ mechanisms that take advantage of ultra-fast ways of recognizing the likely outcomes of our movements and using this as a source of feedback. We conclude by discussing some possible ideas for pedagogy within the sport and physical activity domains, the implications of which would require a rethink on how motor skill learning opportunities might best be facilitated.
Resumo:
This paper introduces our dedicated authenticated encryption scheme ICEPOLE. ICEPOLE is a high-speed hardware-oriented scheme, suitable for high-throughput network nodes or generally any environment where specialized hardware (such as FPGAs or ASICs) can be used to provide high data processing rates. ICEPOLE-128 (the primary ICEPOLE variant) is very fast. On the modern FPGA device Virtex 6, a basic iterative architecture of ICEPOLE reaches 41 Gbits/s, which is over 10 times faster than the equivalent implementation of AES-128-GCM. The throughput-to-area ratio is also substantially better when compared to AES-128-GCM. We have carefully examined the security of the algorithm through a range of cryptanalytic techniques and our findings indicate that ICEPOLE offers high security level.
Resumo:
Urban green infrastructure can help cities adapt to climate change. Spatial planning can play an important role in utilizing green infrastructure for adaptation. Yet climate change risks represent a different sort of challenge for planning institutions. This paper aims to address two issues arising from this challenge. First, it defines the concept of green infrastructure within the context of climate adaptation. Second, it identifies and puts into perspective institutional barriers to adopting green infrastructure for climate adaptation, including path dependence. We begin by arguing that there is growing confusion among planners and policy makers about what constitutes green infrastructure. Definitional ambiguity may contribute to inaction on climate change adaptation, because it muddies existing programs and initiatives that are to do with green-space more broadly, which in turn feeds path dependency. We then report empirical findings about how planners perceive the institutional challenge arising from climate change and the adoption of green infrastructure as an adaptive response. The paper concludes that spatial planners generally recognize multiple rationales associated with green infrastructure. However they are not particularly keen on institutional innovation and there is a tendency for path dependence. We propose a conceptual model that explicitly recognizes such institutional factors. This paper contributes to the literature by showing that agency and institutional dimensions are a limiting factor in advancing the concept of green infrastructure within the context of climate change adaptation.
Resumo:
Background Symptom burden in chronic kidney disease (CKD) is poorly understood. To date, the majority of research focuses on single symptoms and there is a lack of suitable multidimensional symptom measures. The purpose of this study was to modify, translate, cross-culturally adapt and psychometrically analyse the Dialysis Symptom Index (DSI). Methods The study methods involved four phases: modification, translation, pilot-testing with a bilingual non-CKD sample and then psychometric testing with the target population. Content validity was assessed using an expert panel. Inter-rater agreement, test-retest reliability and Cronbach’s alpha coefficient were calculated to demonstrate reliability of the modified DSI. Discriminative and convergent validity were assessed to demonstrate construct validity. Results Content validity index during translation was 0.98. In the pilot study with 25 bilingual students a moderate to perfect agreement (Kappa statistic = 0.60-1.00) was found between English and Arabic versions of the modified DSI. The main study recruited 433 patients CKD with stages 4 and 5. The modified DSI was able to discriminate between non-dialysis and dialysis groups (p < 0.001) and demonstrated convergent validity with domains of the Kidney Disease Quality of Life short form. Excellent test-retest and internal consistency (Cronbach’s α = 0.91) reliability were also demonstrated. Conclusion The Arabic version of the modified DSI demonstrated good psychometric properties, measures the multidimensional nature of symptoms and can be used to assess symptom burden at different stages of CKD. The modified instrument, renamed the CKD Symptom Burden Index (CKD-SBI), should encourage greater clinical and research attention to symptom burden in CKD.
Resumo:
As news communication speeds up, investigative journalists have an increasing responsibility to minimise the risk of harm to vulnerable news sources. In addition, the increased longevity and instant global search-ability of news coverage and investigative journalism outputs such as documentaries, places upon journalists an increased responsibility for accuracy since online coverage cannot be easily corrected or retracted. This paper will examine how the risks to a news source and her family were considered and mitigated during the production of a radio documentary and newspaper story about an intended victim of child sacrifice. Pre-publication considerations included the possible risks to the mental health of the news source, the potential physical risk to her children and the risk to future family relationships. To hear the ABC Radio National documentary, A living sacrifice, on 360 Documentaries prior to the conference, see http://www.abc.net.au/radionational/programs/360/a-living-sacrifice/5359744. To read the Sunday Mail newspaper coverage of the story see http://www.couriermail.com.au/news/queensland/susannah-birch-talks-about-her-throat-being-slit-by-her-mother-when-she-was-a-baby/story-fnihsrf2-1226881911465.