402 resultados para continuous inverse systems
Resumo:
Construction clients often use financial incentives to encourage stakeholder motivation and commitment to voluntary higher-order project goals. Despite the increased use of financial incentives, there is little literature addressing means of optimizing outcomes. Using a case study methodology, the examination of a successful Australian construction project demonstrates the features of a positively geared procurement approach that promotes the effectiveness of financial incentives. The research results show that if the incentive system is perceived to be fair and is applied to reward exceptional performance, and not to manipulate, then contractors are more likely to be positively motivated.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
The co-authors raise two matters they consider essential for the future development of ECEfS. The first is the need to create deep foundations based in research. At a time of increasing practitioner interest, research in ECEfS is meagre. A robust research community is crucial to support quality in curriculum and pedagogy, and to promote learning and innovation in thinking and practice. The second 'essential' for the expansion and uptake of ECEfS is broad systemic change. All level within the early childhood education system - individual teachers and classrooms, whole centres and schools, professional associations and networks, accreditation and employing authorities, and teacher educators - must work together to create and reinforce the cultural and educational changes required for sustainability. This chapter provides explanations of processes to engender systemic change. It illustrates a systems approach, with reference to a recent study focused on embedding EfS into teacher education. This study emphasises the apparent contradiction that the answer to large-scale reform lies with small-scale reforms that build capacity and make connections.
Resumo:
The global financial crisis, global pandemics, global warming and peak oil are indicative of a world facing major environmental, social and economic problems. At the same time, world population continues to rise and global inequalities deepen. Children are the most vulnerable to the impacts of unsustainable living with specific harms arising because of their physical and cognitive vulnerabilities. Nevertheless, children do not have to be victims in the face of these challenges. Education, including early childhood education, has an important role to in building resilience and capabilities in children that equip them as active and informed citizens now and in the future and who are capable of contributing to healthy and sustainable ways of living. Drawing on educational change literature, action research, education for sustainability, health promotion and systems theory, this paper outlines three strategies that can help reorient early childhood education towards sustainability. One strategy is the adoption of whole centre approaches to sustainability and education for sustainability. This means working across the whole of a centre’s operations – curriculum and pedagogy, physical and social environments, its partnerships and community connections. The second strategy – applied in conjunction with the first – is the use of action research to investigate the early childhood setting and to create the desired changes. The third strategy is the adoption of systems thinking as a way of leveraging support and momentum for change so that education for sustainability goes beyond the initiatives of individual teachers and centres, and becomes a systems-wide imperative.
Resumo:
Analytical and computational models of the intervertebral disc (IVD) are commonly employed to enhance understanding of the biomechanics of the human spine and spinal motion segments. The accuracy of these models in predicting physiological behaviour of the spine is intrinsically reliant on the accuracy of the material constitutive representations employed to represent the spinal tissues. There is a paucity of detailed mechanical data describing the material response of the reinforcedground matrix in the anulus fibrosus of the IVD. In the present study, the ‘reinforcedground matrix’ was defined as the matrix with the collagen fibres embedded but not actively bearing axial load, thus incorporating the contribution of the fibre-fibre and fibre-matrix interactions. To determine mechanical parameters for the anulus ground matrix, mechanical tests were carried out on specimens of ovine anulus, under unconfined uniaxial compression, simple shear and biaxial compression. Test specimens of ovine anulus fibrosus were obtained with an adjacent layer of vertebral bone/cartilage on the superior and inferior specimen surface. Specimen geometry was such that there were no continuous collagen fibres coupling the two endplates. Samples were subdivided according to disc region - anterior, lateral and posterior - to determine the regional inhomogeneity in the anulus mechanical response. Specimens were loaded at a strain rate sufficient to avoid fluid outflow from the tissue and typical stress-strain responses under the initial load application and under repeated loading were determined for each of the three loading types. The response of the anulus tissue to the initial and repeated load cycles was significantly different for all load types, except biaxial compression in the anterior anulus. Since the maximum applied strain exceeded the damage strain for the tissue, experimental results for repeated loading reflected the mechanical ability of the tissue to carry load, subsequent to the initiation of damage. To our knowledge, this is the first study to provide experimental data describing the response of the ‘reinforcedground matrix’ to biaxial compression. Additionally, it is novel in defining a study objective to determine the regionally inhomogeneous response of the ‘reinforcedground matrix’ under an extensive range of loading conditions suitable for mechanical characterisation of the tissue. The results presented facilitate the development of more detailed and comprehensive constitutive descriptions for the large strain nonlinear elastic or hyperelastic response of the anulus ground matrix.
Resumo:
Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.
Resumo:
ERP systems generally implement controls to prevent certain common kinds of fraud. In addition however, there is an imperative need for detection of more sophisticated patterns of fraudulent activity as evidenced by the legal requirement for company audits and the common incidence of fraud. This paper describes the design and implementation of a framework for detecting patterns of fraudulent activity in ERP systems. We include the description of six fraud scenarios and the process of specifying and detecting the occurrence of those scenarios in ERP user log data using the prototype software which we have developed. The test results for detecting these scenarios in log data have been verified and confirm the success of our approach which can be generalized to ERP systems in general.
Resumo:
Light gauge steel frame (LSF) structures are increasingly used in commercial and residential buildings because of their non-combustibility, dimensional stability and ease of installation. A common application is in floor-ceiling systems. The LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was conducted to investigate its structural and fire resistance behaviour under standard fire conditions. This paper presents the results of full scale experimental investigations into the structural and fire behaviour of the new LSF floor system protected by the composite ceiling unit. Both the conventional and the new floor systems were tested under structural and fire loads. It demonstrates the improvements provided by the new composite panel system in comparison to conventional floor systems. Numerical studies were also undertaken using the finite element program ABAQUS. Measured temperature profiles of floors were used in the numerical analyses and their results were compared with fire test results. Tests and numerical studies provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system.
Resumo:
The research described in this paper is directed toward increasing productivity of draglines through automation. In particular, it focuses on the swing-to-dump, dump, and return-to-dig phases of the dragline operational cycle by developing a swing automation system. In typical operation the dragline boom can be in motion for up to 80% of the total cycle time. This provides considerable scope for improving cycle time through automated or partially automated boom motion control. This paper describes machine vision based sensor technology and control algorithms under development to solve the problem of continuous real time bucket location and control. Incorporation of this capability into existing dragline control systems will then enable true automation of dragline swing and dump operations.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
This paper introduces a novel strategy for the specification of airworthiness certification categories for civil unmanned aircraft systems (UAS). The risk-based approach acknowledges the fundamental differences between the risk paradigms of manned and unmanned aviation. The proposed airworthiness certification matrix provides a systematic and objective structure for regulating the airworthiness of a diverse range of UAS types and operations. An approach for specifying UAS type categories is then discussed. An example of the approach, which includes the novel application of data-clustering algorithms, is presented to illustrate the discussion.
Resumo:
RatSLAM is a system for vision-based Simultaneous Localisation and Mapping (SLAM) inspired by models of the rodent hippocampus. The system can produce stable representations of large complex environments during robot experiments in both indoor and outdoor environments. These representations are both topological and metric in nature, and can involve multiple representations of the same place as well as discontinuities. In this paper we describe a new technique known as experience mapping that can be used online with the RatSLAM system to produce world representations known as experience maps. These maps group together multiple place representations and are spatially continuous. A number of experiments have been conducted in simulation and a real world office environment. These experiments demonstrate the high degree to which experience maps are representative of the spatial arrangement of the environment.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming technologies. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It has found increasing popularity in residential, industrial and commercial buildings as flexural members. The LSB is considerably lighter than traditional hot-rolled steel beams and provides both structural and construction efficiencies. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral defection, twist and cross sectional change due to web distortion. The current design rules in AS/NZS 4600 (SA, 2005) for flexural members subject to lateral distortional buckling were found to be conservative by about 8% in the inelastic buckling region. Therefore, a new design rule was developed for LSBs subject to lateral distortional buckling based on finite element analyses of LSBs. The effect of section geometry was then considered and several geometrical parameters were used to develop an advanced set of design rules. This paper presents the details of the finite element analyses and the design curve development for hollow flange sections subject to lateral distortional buckling.
Resumo:
This paper presents an Airborne Systems Laboratory for Automation Research. The Airborne Systems Laboratory (ASL) is a Cessna 172 aircraft that has been specially modified and equipped by ARCAA specifically for research in future aircraft automation technologies, including Unmanned Airborne Systems (UAS). This capability has been developed over a long period of time, initially through the hire of aircraft, and finally through the purchase and modification of a dedicated flight-testing capability. The ASL has been equipped with a payload system that includes the provision of secure mounting, power, aircraft state data, flight management system and real-time subsystem. Finally, this system has been deployed in a cost effective platform allowing real-world flight-testing on a range of projects.