Transaction mining for fraud detection in ERP Systems


Autoria(s): Khan, Roheena Q.; Corney, Malcolm W.; Clark, Andrew J.; Mohay, George M.
Data(s)

01/06/2010

Resumo

Despite all attempts to prevent fraud, it continues to be a major threat to industry and government. Traditionally, organizations have focused on fraud prevention rather than detection, to combat fraud. In this paper we present a role mining inspired approach to represent user behaviour in Enterprise Resource Planning (ERP) systems, primarily aimed at detecting opportunities to commit fraud or potentially suspicious activities. We have adapted an approach which uses set theory to create transaction profiles based on analysis of user activity records. Based on these transaction profiles, we propose a set of (1) anomaly types to detect potentially suspicious user behaviour, and (2) scenarios to identify inadequate segregation of duties in an ERP environment. In addition, we present two algorithms to construct a directed acyclic graph to represent relationships between transaction profiles. Experiments were conducted using a real dataset obtained from a teaching environment and a demonstration dataset, both using SAP R/3, presently the predominant ERP system. The results of this empirical research demonstrate the effectiveness of the proposed approach.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/32390/

Publicador

The Korean Institute of Industrial Engineers

Relação

http://eprints.qut.edu.au/32390/1/c32390.pdf

http://www.koreascience.or.kr/search/articlepdf_ocean.jsp?url=http://ocean.kisti.re.kr/downfile/volume/kiie/SGHHEA/2010/v9n2/SGHHEA_2010_v9n2_141.pdf

Khan, Roheena Q., Corney, Malcolm W., Clark, Andrew J., & Mohay, George M. (2010) Transaction mining for fraud detection in ERP Systems. Industrial Engineering and Management Systems, 9(2), pp. 141-156.

Direitos

Copyright 2010 [please consult the authors]

Fonte

Faculty of Science and Technology; Information Security Institute

Palavras-Chave #080303 Computer System Security #Fraud Detection #Audit Trail Analysis #Anomaly Detection #Security #Enterprise Resource Planning Systems #Role Mining
Tipo

Journal Article