482 resultados para NUCLEAR SCIENCE
Resumo:
Before the age of 75 years, approximately 10% of women will be diagnosed with breast cancer, one of the most common malignancies and a leading cause of death among women. The objective of this study was to determine if expression of the nuclear receptor coactivators 1 and 3 (NCoA1 and NCoA3) varied in breast cancer grades. RNA was extracted from 25 breast tumours and transcribed into cDNA which underwent semi-quantitative polymerase chain reaction, normalised using 18S. Analysis indicated that an expression change for NCoA1 in cancer grades and estrogen receptor alpha negative tissue (P= 0.028 and 0.001 respectively). NCoA1 expression increased in grade 3 and estrogen receptor alpha negative tumours, compared to controls. NCoA3 showed a similar, but not significant, trend in grade and a non-significant decrease in estrogen receptor alpha negative tissues. Expression of NCoA1 in late stage and estrogen receptor alpha negative breast tumours may have implications to breast cancer treatment, particularly in the area of manipulation of hormone signalling systems in advanced tumours.
Resumo:
BACKGROUND: Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. METHODS: RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. RESULTS: Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). CONCLUSION: Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue.
Resumo:
This study seeks to bring the discipline of exercise science into the discussion of Quantitative Skills (QS) in Science. The author’s experiences of providing learning support to students and working with educators in the field are described, demonstrating the difficulty of encouraging students to address their skills deficit. A survey of students’ perceptions of their own QS and of that required for their course, demonstrates the difficulties faced by students who do not have the prescribed assumed knowledge for the course. Limited results from academics suggest that their perceptions of students’ QS deficits are even more dire than those of the under-prepared students.
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
This study is about young adolescents' engagement in learning science. The middle years of schooling are critical in the development of students' interest and engagement with learning. Successful school experiences enhance dispositions towards a career related to those experiences. Poor experiences lead to negative attitudes and rejection of certain career pathways. At a time when students are becoming more aware, more independent and focused on peer relationships and social status, the high school environment in some circumstances offers more a content-centred curriculum that is less personally relevant to their lives than the social melee surrounding them. Science education can further exacerbate the situation by presenting abstract concepts that have limited contextual relevance and a seemingly difficult vocabulary that further alienates adolescents from the curriculum. In an attempt to reverse a perceived growing disinterest by students to science (Goodrum, Druhan & Abbs, 2011), a study was initiated based on a student-centred unit designed to enhance and sustain adolescent engagement in science. The premise of the study was that adolescent students are more responsive toward learning if they are given an appropriate learning environment that helps connect their learning with life beyond the school. The purpose of this study was to examine the experiences of young adolescents with the aim of transforming school learning in science into meaningful experiences that connected with their lives. Two areas were specifically canvassed and subsumed within the study to strengthen the design base. One area that of the middle schooling ideology, offered specific pedagogical approaches and a philosophical framework that could provide opportunities for reform. The other area, the construct of scientific literacy (OECD, 2007) as defined by Holbrook and Rannikmae, (2009) appeared to provide a sense of purpose for students to aim toward and value for becoming active citizens. The study reported here is a self-reflection of a teacher/researcher exploring practice and challenging existing approaches to the teaching of science in the middle years of schooling. The case study approach (Yin, 2003) was adopted to guide the design of the study. Over a 6-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of student-centred pedagogical practices with a Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. Both quantitative and qualitative data sources were employed in a partially mixed methods research approach (Leech & Onwuegbuzie, 2009) dominated by qualitative data with the concurrent collection of quantitative data to corroborate interpretations as a means of analysing and developing a model of the dynamic learning environment. The findings from the case study identified five propositions that became the basis for a model of a student-centred learning environment that was able to sustain student participation and thus engagement in science. The study suggested that adolescent student engagement can be promoted and sustained by providing a classroom climate that encourages and strengthens social interaction. Engagement in science can be enhanced by presenting developmentally appropriate challenges that require rigorous exploration of contextually relevant learning environments; supporting students to develop connections with a curriculum that aligns with their own experiences. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provide an authentic model for reforming pedagogy. The model and theory presented became an adjunct to my repertoire for science teaching in the middle years of schooling. The study was rewarding in that it helped address a void in my understanding of middle years of schooling by prompting me to re-think the notion of adolescence in the context of the science classroom. This study is timely given the report "The Status and Quality of Year 11 and 12 Science in Australian Schools" (Goodrum, Druhan & Abbs, 2011) and national curricular changes that are being proposed for science (ACARA, 2009).
Resumo:
Governments have recognised that the technological trades rely on knowledge embedded traditionally in science, technology, engineering and mathematics (STEM) disciplines. However, there is substantial evidence that students are turning away from these subjects in schools because the school curriculum is seen as irrelevant, with clear implications for not just vocational education but also higher education. In this paper, we report preliminary findings on the development of two curricula that attempt to integrate science and mathematics with workplace knowledge and practices. We argue that these curricula provide educational opportunities for students to pursue their preferred career pathways. These curricula were co-developed by industry and educational personnel across three industry sectors, namely, mining industry, aerospace and wine tourism. The aim was to provide knowledge appropriate for students moving from school to the workplace as trade apprentices in the respective industries. The analysis of curriculum and associated policy documents reveals that the curricula adopt applied learning orientations through teaching strategies and assessment practices which focus on practical skills. However, although key theoretical science and maths concepts have been well incorporated, the extent to which knowledge deriving from workplace practices is included varies across the curricula. The extent to which applications of concepts are included in the models depends on a number of factors not least the relevant expertise of the teacher as a practitioner in the industry. Our findings highlight the importance of teachers having substantial practical industry experience and the role that whole school policies play in attempts to align the range of learning experiences with the needs of industry.
Resumo:
Monte Carlo simulations were used to investigate the relationship between the morphological characteristics and the diffusion tensor (DT) of partially aligned networks of cylindrical fibres. The orientation distributions of the fibres in each network were approximately uniform within a cone of a given semi-angle (θ0). This semi-angle was used to control the degree of alignment of the fibres. The networks studied ranged from perfectly aligned (θ0 = 0) to completely disordered (θ0 = 90°). Our results are qualitatively consistent with previous numerical models in the overall behaviour of the DT. However, we report a non-linear relationship between the fractional anisotropy (FA) of the DT and collagen volume fraction, which is different to the findings from previous work. We discuss our results in the context of diffusion tensor imaging of articular cartilage. We also demonstrate how appropriate diffusion models have the potential to enable quantitative interpretation of the experimentally measured diffusion-tensor FA in terms of collagen fibre alignment distributions.
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
Many primary teachers and preservice teachers experience a fear of science that translates into a fear of teaching science. Consequently, primary students may not receive a full science education curriculum, particularly as the teaching of science is avoided by many primary teachers, as shown in an Australian report by Goodrum, Hackling and Rennie ( 2001 ). Preservice teachers need to develop confi dence to teach primary science, by understanding what science is, knowing how to plan and assess science learning, and teaching science skills and knowledge in ways that engage students in science education.
Resumo:
This study explored the interactions of a highly motivated group of students doing traditional practical work in science. Interest focussed on the social construction of understanding and how this could be described. Despite considerable collaboration in constructing an understanding of the task the students rarely focussed on the concepts the practical work was intended to illustrate. Collaboration was described in terms of social behaviours and discourse moves which supported the use of cognitive strategies.
Resumo:
Toxic blooms of Lyngbya majuscula occur in coastal areas worldwide and have major ecological, health and economic consequences. The exact causes and combinations of factors which lead to these blooms are not clearly understood. Lyngbya experts and stakeholders are a particularly diverse group, including ecologists, scientists, state and local government representatives, community organisations, catchment industry groups and local fishermen. An integrated Bayesian Network approach was developed to better understand and model this complex environmental problem, identify knowledge gaps, prioritise future research and evaluate management options.
Resumo:
In response to a growing interest in art and science interactions and transdisciplinary research strategies, this research project examines the critical and conceptual affordances of ArtScience practice and outlines a new experiential methodology for practice-lead research using a framework of creative becoming. In doing so, the study contributes to the field of ArtScience and transdisciplinary practice, by providing new strategies for creative development and critical enquiry across art and science.
Resumo:
Countless studies have stressed the importance of social identity, particularly its role in various organizational outcomes, yet questions remain as to how identities initially develop, shift and change based on the configuration of multiple, pluralistic relationships grounded in an organizational setting. The interactive model of social identity formation has been proposed recently to explain the internalization of shared norms and values – critical in identity formation – has not received empirical examination. We analyzed multiple sources of data from nine nuclear professionals over three years to understand the construction of social identity in new entrants entering an organization. Informed by our data analyses, we found support for the interactive model and that age and level of experience influenced whether they undertook an inductive or deductive route of the group norm and value internalization. This study represents an important contribution to the study of social identity and the process by which identities are formed, particularly under conditions of duress or significant organizational disruption.
Resumo:
We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.