451 resultados para HYDRAULIC REDISTRIBUTION
Resumo:
Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.
Resumo:
A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.
Resumo:
This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.
Resumo:
This paper describes an effective method for signal-authentication and spoofing detection for civilian GNSS receivers using the GPS L1 C/A and the Galileo E1-B Safety of Life service. The paper discusses various spoofing attack profiles and how the proposed method is able to detect these attacks. This method is relatively low-cost and can be suitable for numerous mass-market applications. This paper is the subject of a pending patent.
Resumo:
Ethernet is a key component of the standards used for digital process buses in transmission substations, namely IEC 61850 and IEEE Std 1588-2008 (PTPv2). These standards use multicast Ethernet frames that can be processed by more than one device. This presents some significant engineering challenges when implementing a sampled value process bus due to the large amount of network traffic. A system of network traffic segregation using a combination of Virtual LAN (VLAN) and multicast address filtering using managed Ethernet switches is presented. This includes VLAN prioritisation of traffic classes such as the IEC 61850 protocols GOOSE, MMS and sampled values (SV), and other protocols like PTPv2. Multicast address filtering is used to limit SV/GOOSE traffic to defined subsets of subscribers. A method to map substation plant reference designations to multicast address ranges is proposed that enables engineers to determine the type of traffic and location of the source by inspecting the destination address. This method and the proposed filtering strategy simplifies future changes to the prioritisation of network traffic, and is applicable to both process bus and station bus applications.
Resumo:
This paper presents channel measurements and weather data collection experiments conducted in a rural environment for an innovative Multi-User-Single-Antenna (MUSA) MIMO-OFDM technology, proposed for rural areas. MUSA MIMO-OFDM uplink channels are established by placing six user terminals (UT) around one access point (AP). Generated terrain profiles and relative received power plots are presented based on the experimental data. According to the relative received signal, MUSA-MIMO-OFDM uplink channels experience temporal fading. Moreover, the correlation between the relative received power and weather variables are presented. Results show that all weather variables exhibit a negative average correlation with received power. Wind speed records the highest average negative correlation coefficient of -0.35. Local maxima of negative correlation, ranging from 0.49 to 0.78, between the weather variables and relative received signals were registered between 5-6 a.m. The highest measured correlation (-0.78) of this time of the day was exhibited by wind speed. These results show the extend of time variation effects experienced by MUSA-MIMO-OFDM channels deployed in rural environments.
Resumo:
This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Using local consistency assumption, the practical stability established is in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Significantly, these practical stability results do not require the approximating model to be of the same model type as the true system. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.
Resumo:
The aim of this work is to develop a Demand-Side-Response (DSR) model, which assists electricity end-users to be engaged in mitigating peak demands on the electricity network in Eastern and Southern Australia. The proposed innovative model will comprise a technical set-up of a programmable internet relay, a router, solid state switches in addition to the suitable software to control electricity demand at user's premises. The software on appropriate multimedia tool (CD Rom) will be curtailing/shifting electric loads to the most appropriate time of the day following the implemented economic model, which is designed to be maximizing financial benefits to electricity consumers. Additionally the model is targeting a national electrical load be spread-out evenly throughout the year in order to satisfy best economic performance for electricity generation, transmission and distribution. The model is applicable in region managed by the Australian Energy Management Operator (AEMO) covering states of Eastern-, Southern-Australia and Tasmania.
Resumo:
This paper considers an aircraft collision avoidance design problem that also incorporates design of the aircraft’s return-to-course flight. This control design problem is formulated as a non-linear optimal-stopping control problem; a formulation that does not require a prior knowledge of time taken to perform the avoidance and return-to-course manoeuvre. A dynamic programming solution to the avoidance and return-to-course problem is presented, before a Markov chain numerical approximation technique is described. Simulation results are presented that illustrate the proposed collision avoidance and return-to-course flight approach.
Resumo:
In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.
Resumo:
The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.
Resumo:
We present a technique for estimating the 6DOF pose of a PTZ camera by tracking a single moving target in the image with known 3D position. This is useful in situations where it is not practical to measure the camera pose directly. Our application domain is estimating the pose of a PTZ camerso so that it can be used for automated GPS-based tracking and filming of UAV flight trials. We present results which show the technique is able to localize a PTZ after a short vision-tracked flight, and that the estimated pose is sufficiently accurate for the PTZ to then actively track a UAV based on GPS position data.
Resumo:
Crack is a significant influential factor in soil slope that could leads to rainfall-induced slope instability. Existence of cracks at soil surface will decrease the shear strength and increase the hydraulic conductivity of soil slope. Although previous research has shown the effect of surface-cracks in soil stability, the influence of deep-cracks on soil stability is still unknown. The limited availability of deep crack data due to the difficulty of effective investigate methods could be one of the obstacles. Current technology in electrical resistivity can be used to detect deep-cracks in soil. This paper discusses deep cracks in unsaturated residual soil slopes in Indonesia using electrical resistivity method. The field investigation such as bore hole and SPT tests was carried out at multiple locations in the area where the electrical resistivity testing have been conducted. Subsequently, the results from bore-hole and SPT test were used to verify the results of the electrical resistivity test. This study demonstrates the benefits and limitations of the electrical resistivity in detecting deep-cracks in a residual soil slopes.