380 resultados para Autonomous vehicle
Resumo:
As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.
Resumo:
In this paper, we present an approach for image-based surface classification using multi-class Support Vector Machine (SVM). Classifying surfaces in aerial images is an important step towards an increased aircraft autonomy in emergency landing situations. We design a one-vs-all SVM classifier and conduct experiments on five data sets. Results demonstrate consistent overall performance figures over 88% and approximately 8% more accurate to those published on multi-class SVM on the KTH TIPS data set. We also show per-class performance values by using normalised confusion matrices. Our approach is designed to be executed online using a minimum set of feature attributes representing a feasible and ready-to-deploy system for onboard execution.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
In Kumar v Suncorp Metway Insurance Limited [2004] QSC 381 Douglas J examined s37 of the Motor Accident Insurance Act 1994 (Qld) in the context of an accident involving multiple insurers when a notice of accident had not been given to the Nominal Defendant
Resumo:
This project is a breakthrough in developing new scientific approaches for the design, development and evaluation of inter-vehicle communications, networking and positioning systems as part of Cooperative Intelligent Transportation Systems ensuring the safety of both roads and rail networks. This research focused on the elicitation, specification, analysis and validation of requirements for Vehicle-to-Vehicle communications and networking, and Vehicle-to-Vehicle positioning, which are accomplished with the research platform developed for this study. A number of mathematical models for communications, networking and positioning were developed from which simulations and field experiments were conducted to evaluate the overall performance of the platform. The outcomes of this research significantly contribute to improving the performance of the communications and positioning components of Cooperative Intelligent Transportation Systems.
Resumo:
In Gideona v Nominal Defendant [2005] QCA 261, the Queensland Court of Appeal reconsidered the question of what is the material time for determining whether registration of a motor vehicle is required. The Court declined to follow the decision in Kelly v Alford [1988] 1 Qd R 404; deciding that the material time was the time when the accident occurred.
Resumo:
This research proposed a new framework for safety culture and examined the influence that culture has on safety in the heavy vehicle industry. The results gave evidence for an industry wide culture, allowing future safety interventions to be designed in a culturally-relevant manner. Designing culturally-relevant interventions may maximise their effectiveness and reduce the levels of resistance to safety that have been evident in past years.
Resumo:
Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.
Resumo:
Aggressive behavior at the steering wheel has been indicated as a contributing factor in a majority of crashes and anger has been compared to alcohol impairment in terms of probability to cause a crash. It has been shown that being in a state of anger or excitement while driving can decrease the drivers’ performances. . This paper reports the evaluation of 6 novel design alternatives of In-Vehicle Information Systems (IVIS) aimed at mitigating driver aggression. Each application presented was designed to tackle the following contributing factors to driver aggression: competitiveness, anonymity, territoriality, stress as well as social and emotional isolation. The 6 applications were simulated using computer vision algorithm to automatically overlay the real traffic conditions with ‘Head-Up Display’ visualizations. Two applications emerged over the others from participant’s evaluation: shared music combined the known calming effect of music with the sense of sympathy and intimacy caused by hearing other drivers’ music. The Shared Snapshot application provided an immediate gratification and was evaluated as a potential prevention of roadside quarrels. The paper presents Theoretical foundation, participant’s evaluations, implications and limitations of the study.
Resumo:
The social cost of road injury and fatalities is still unacceptable. The driver is often mainly responsible for road crashes, therefore changing the driver behaviour is one of the most important and most challenging priority in road transport. This paper presents three innovative visions that articulate the potential of using Vehicle to Vehicle (V2V) communication for supporting the exchange of social information amongst drivers. We argue that there could be tremendous benefits in socialising cars to influence human driving behaviours for the better and that this aspect is still relevant in the age of looming autonomous cars. Our visions provide theoretical grounding how V2V infrastructure and emerging human–machine interfaces (HMI) could persuade drivers to: (i) adopt better (e.g. greener) driving practices, (ii) reduce drivers aggressiveness towards pro-social driving behaviours, and (iii) reduce risk-taking behaviour in young, particularly male, adults. The visions present simple but powerful concepts that reveal ‘good’ aspects of the driver behaviour to other drivers and make them contagious. The use of self-efficacy, social norms, gamification theories and social cues could then increase the likelihood of a widespread adoption of such ‘good’ driving behaviours.
Resumo:
A newspaper numbers game based on simple arithmetic relationships is discussed. Its potential to give students of elementary algebra practice in semi-ad hoc reasoning and to build general arithmetic reasoning skills is explored.