138 resultados para VISCOELASTIC FLUIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left – 100mmHg and right – 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How various additives can increase some cardio-vascular diseases and effects of transport for albumin and glucose through permeable membranes are some important studies in biomechanics. The rolling phenomena of the leucocytes gives rise to an inflammatory reaction along a vascular wall. Initiated by Eringen [5], a micropolar fluid is a satisfactory model for flows of fluids which contain micro-constituents which can undergo rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bicycle ergometer is a scientific device used by exercise physiologists which attempts to mimic on-road cycling characteristics such as foot technique, EMG activity, VO2, VCO2 and rider cardiology in a laboratory environment. Presently there are no known useful scientific ergometers that mimic these characteristics and are able to provide a satisfactory controlled resistance that is independent of speed. Previous research has suggested the use of a Magneto-Rheological (MR) Fluid as part of the ergometer design, as when used in a rotary brake application it is able to be controlled electronically to increase resistance instantly and independent of speed. In the target application, MR fluids are subject to immense tribological wear and temperature during viscous shearing, and will eventually show some degree of deterioration which is usually manifested as an increase in off-state viscosity. It is not known exactly how the fluid fails, however the amount of deterioration is related to the shear rate, temperature and duration and directly related to the power dissipation. Currently, there is very little literature that investigates the flow and thermal characteristics of MR fluid tribology using CFD. In this paper, we present initial work that aims to improve understanding of MR fluid wear via CFD modelling using Fluent, and results from the model are compared with those obtained from a experimental test rig of an MR fluid-based bicycle ergometer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top screw pullout occurs when the screw is under too much axial force to remain secure in the vertebral body. In vitro biomechanical pullout tests are commonly done to find the maximum fixation strength of anterior vertebral body screws. Typically, pullout tests are done instantaneously where the screw is inserted and then pulled out immediately after insertion. However, bone is a viscoelastic material so it shows a time dependent stress and strain response. Because of this property, it was hypothesised that creep occurs in the vertebral trabecular bone due to the stress caused by the screw. The objective of this study was therefore to determine whether the axial pullout strength of anterior vertebral body screws used for scoliosis correction surgery changes with time after insertion. This study found that there is a possible relationship between pullout strength and time; however more testing is required as the sample numbers were quite small. The design of the screw is made with the knowledge of the strength it must obtain. This is important to prevent such occurrences as top screw pullout. If the pullout strength is indeed decreased due to creep, the design of the screw may need to be changed to withstand greater forces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two common methods have been used to evaluate the in vitro bioactivity of bioceramics for the application of bone repair. One is to evaluate the ability of apatite formation by soaking ceramics in simulated body fluids (SBF); the other method is to evaluate the effect of ceramics on osteogenic differentiation using cell experiments. Both methods have their own drawbacks in evaluating the in vitro bioactivity of bioceramics. In this commentary paper we review the application of both methods in bioactivity of bioceramics and conclude that (i) SBF method is an efficient method to investigate the in vitro bioactivity of silicate-based bioceramics, (ii) cellular bioactivity of bioceramics should be investigated by evaluating their stimulatory ability using standard bioceramics as controls; and (iii) the combination of these two methods to evaluate the in vitro bioactivity of bioceramics can improve the screening efficiency for the selection of bioactive ceramics for bone regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distracted is a luminous, interactive, computational media installation of sound, light and translucent sculptural materials. The work is inspired by scientific ice core samples taken in Antarctica. The sculpture is capable of displaying data taken from these ice core samples, and responding to the proximity of an audience. Rather than simply using the interface as a didactic display device, we have chosen a more poetic approach of generating visual effects from the data that are evocative of the ice, fluids and the notion of change. The data has also been used in the composition of an evolving soundscape. As well as data from ice core samples, such as the Vostok ice core, we have incorporated data from the Keeling Curve that shows the annual rise and fall of atmospheric carbon dioxide, following the pattern of the Northern Hemisphere winter. These effects combine with changes caused directly by audience members as they come within close proximity to the work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To investigate the impact of a train-the-trainer program on the nutritional status of older people in residential care. ----- Design: Prospective, randomized controlled study. Setting: Eight nursing homes in Southeast Queensland, Australia. ----- Participants: A total of 352 residents participated - 245 were female (69.6%). The mean age was 84.2 years and the majority (79.4%) were classified as high dependency. ----- Intervention: Residents from four nursing homes were randomly selected for a nutrition education program coordinated by Nutrition Coordinators. Residents from the other four nursing homes (control) received usual care. ----- Measurements: The Subjective Global Assessment was used to determine prevalence of malnutrition at baseline and six months post intervention. The Resident Classification Scale measured functional dependency. Prescribed diet, fluids, oral hygiene status and allied health referrals were obtained by chart audit. ----- Results: Approximately half the residents were well nourished with 49.4% moderately or severely malnourished. Residents in the intervention group were more likely to maintain or improve their nutritional status compared with the control group who were more likely to experience a deterioration (P=0.027). The odds of the control group being malnourished post test was 1.6 times more likely compared with the intervention group but this did not reach statistical significance (P=0.1). ----- Conclusion: The results of the study encourage the implementation of a Nutrition Coordinator program to maintain nutritional status of aged care residents. Nevertheless, malnutrition rates continue to be unacceptably high. In a rapidly aging society, the aged care sector needs to confront malnutrition and provide better resources for staff to take measures against this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the resorbable-polymer-boom of the 1970s and 1980s, polycaprolactone (PCL) was used in the biomaterials field and a number of drug-delivery devices. Its popularity was soon superseded by faster resorbable polymers which had fewer perceived disadvantages associated with long term degradation (up to 3-4 years) and intracellular resorption pathways; consequently, PCL was almost forgotten for most of two decades. Recently, a resurgence of interest has propelled PCL back into the biomaterials-arena. The superior rheological and viscoelastic properties over many of its aliphatic polyester counterparts renders PCL easy to manufacture and manipulate into a large range of implants and devices. Coupled with relatively inexpensive production routes and FDA approval, this provides a promising platform for the production of longer-term degradable implants which may be manipulated physically, chemically and biologically to possess tailorable degradation kinetics to suit a specific anatomical site. This review will discuss the application of PCL as a biomaterial over the last two decades focusing on the advantages which have propagated its return into the spotlight with a particular focus on medical devices, drug delivery and tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise is known to cause physiological changes that could affect the impact of nutrients on appetite control. This study was designed to assess the effect of drinks containing either sucrose or high-intensity sweeteners on food intake following exercise. Using a repeated-measures design, three drink conditions were employed: plain water (W), a low-energy drink sweetened with artificial sweeteners aspartame and acesulfame-K (L), and a high-energy, sucrose-sweetened drink (H). Following a period of challenging exercise (70% VO2 max for 50 min), subjects consumed freely from a particular drink before being offered a test meal at which energy and nutrient intakes were measured. The degree of pleasantness (palatability) of the drinks was also measured before and after exercise. At the test meal, energy intake following the artificially sweetened (L) drink was significantly greater than after water and the sucrose (H) drinks (p < 0.05). Compared with the artificially sweetened (L) drink, the high-energy (H) drink suppressed intake by approximately the energy contained in the drink itself. However, there was no difference between the water (W) and the sucrose (H) drink on test meal energy intake. When the net effects were compared (i.e., drink + test meal energy intake), total energy intake was significantly lower after the water (W) drink compared with the two sweet (L and H) drinks. The exercise period brought about changes in the perceived pleasantness of the water, but had no effect on either of the sweet drinks. The remarkably precise energy compensation demonstrated after the higher energy sucrose drink suggests that exercise may prime the system to respond sensitively to nutritional manipulations. The results may also have implications for the effect on short-term appetite control of different types of drinks used to quench thirst during and after exercise.