31 resultados para Titsingh, Susanna Regina.
Resumo:
The player experience is at the core of videogame play. Understanding the facets of player experience presents many research challenges, as the phenomenon sits at the intersection of psychology, design, human-computer interaction, sociology, and physiology. This workshop brings together an interdisciplinary group of researchers to systematically and rigorously analyse all aspects of the player experience. Methods and tools for conceptualising, operationalising and measuring the player experience form the core of this research. Our aim is to take a holistic approach to identifying, adapting and extending theories and models of the player experience, to understand how these theories and models interact, overlap and differ, and to construct a unified vision for future research.
Resumo:
Background Several lines of evidence suggests that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but a complete mapping the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors which may be involved in one subtype may not be in others. We investigated the possibility that this network could be mapped using microarray technologies and modern bioinformatics methods on a dataset from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls, Methodology/Principal Findings We have used two different analytical methodologies: a differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that seem to be statistically overrepresented in genes which are either differentially expressed (or differentially co-expressed) in cases and controls (e.g. V$KROX_Q6, p-value < 3.31E-6; V$CREBP1_Q2, p-value < 9.93E-6, V$YY1_02, p-value < 1.65E-5). Conclusions/significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. Analysing the published literature we have found that these transcription factors are involved in the early T-lymphocyte specification and commitment as well as in oligodendrocytes dedifferentiation and development. The most significant transcription factors motifs were for the Early Growth response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families.
Resumo:
This paper outlines a review carried out at Queensland University of Technology (QUT) in 2013 to identify the extent to which the centrally supported virtual learning environment met current and future learning and teaching needs. A range of consultation and investigation activities occurred from May to November to encourage open stakeholder feedback as well as to allow for reflection on alternative digital technologies, systems and strategies. This resulted in the development of nine recommendations, which, following a planning phase, will commence being implemented from mid-2014.
Resumo:
The drying of grapes is a more complex process compared to the dehydration of other agricultural materials due to the necessity of a pretreatment operation prior to drying. Grape drying to produce raisins is a very slow process, due to the peculiar structure of grape peel, that is covered by a waxy layer.Its removal has benn so far carried out by using several chemical pre-treatments. However, they cause heterogeneity in the waxes removal and create microscopic cracks. In this paper an abrasive pretreatment for enhancing the drying rate and preserving the grape samples is proposed. Two cultivars of grape were investigated: Regina white grape and Red Globe red grape. The drying kinetics of untreated and treated samples were studied using a convective oven at 50 C. Fruit quality parameters such as sugar and organic acid contents, shrinkage, texture, peel damage (i.e. by SEM analysis) and rehydration capacity were studied to evaluate the effectiveness of abrasive pretreatment on raisins. Abrasive pretreatment contributed to reduce drying time and rehydration time. The treated and untreated dried grapes were significantly different (p<0.05) in sugar and in tartaric acid content. On the contrary, no significant differences (p<0.05) in malic and citric acids in texture peoperties between untreated and treated samples were observed.
Resumo:
Background: Preventing risk factor exposure is vital to reduce the high burden from lung cancer. The leading risk factor for developing lung cancer is tobacco smoking. In Australia, despite apparent success in reducing smoking prevalence, there is limited information on small area patterns and small area temporal trends. We sought to estimate spatio-temporal patterns for lung cancer risk factors using routinely collected population-based cancer data. Methods: The analysis used a Bayesian shared component spatio-temporal model, with male and female lung cancer included separately. The shared component reflected exposure to lung cancer risk factors, and was modelled over 477 statistical local areas (SLAs) and 15 years in Queensland, Australia. Analyses were also run adjusting for area-level socioeconomic disadvantage, Indigenous population composition, or remoteness. Results: Strong spatial patterns were observed in the underlying risk factor exposure for both males (median Relative Risk (RR) across SLAs compared to the Queensland average ranged from 0.48-2.00) and females (median RR range across SLAs 0.53-1.80), with high exposure observed in many remote areas. Strong temporal trends were also observed. Males showed a decrease in the underlying risk across time, while females showed an increase followed by a decrease in the final two years. These patterns were largely consistent across each SLA. The high underlying risk estimates observed among disadvantaged, remote and indigenous areas decreased after adjustment, particularly among females. Conclusion: The modelled underlying exposure appeared to reflect previous smoking prevalence, with a lag period of around 30 years, consistent with the time taken to develop lung cancer. The consistent temporal trends in lung cancer risk factors across small areas support the hypothesis that past interventions have been equally effective across the state. However, this also means that spatial inequalities have remained unaddressed, highlighting the potential for future interventions, particularly among remote areas.
Resumo:
Traditionally, it is not easy to carry out tests to identify modal parameters from existing railway bridges because of the testing conditions and complicated nature of civil structures. A six year (2007-2012) research program was conducted to monitor a group of 25 railway bridges. One of the tasks was to devise guidelines for identifying their modal parameters. This paper presents the experience acquired from such identification. The modal analysis of four representative bridges of this group is reported, which include B5, B15, B20 and B58A, crossing the Carajás railway in northern Brazil using three different excitations sources: drop weight, free vibration after train passage, and ambient conditions. To extract the dynamic parameters from the recorded data, Stochastic Subspace Identification and Frequency Domain Decomposition methods were used. Finite-element models were constructed to facilitate the dynamic measurements. The results show good agreement between the measured and computed natural frequencies and mode shapes. The findings provide some guidelines on methods of excitation, record length of time, methods of modal analysis including the use of projected channel and harmonic detection, helping researchers and maintenance teams obtain good dynamic characteristics from measurement data.
Resumo:
Background Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in cancer survival. Multilevel models assume independent geographical areas, whereas spatial models explicitly incorporate geographical correlation, often via a conditional autoregressive prior. However the relative merits of these methods for large population-based studies have not been explored. Using a case-study approach, we report on the implications of using multilevel and spatial survival models to study geographical inequalities in all-cause survival. Methods Multilevel discrete-time and Bayesian spatial survival models were used to study geographical inequalities in all-cause survival for a population-based colorectal cancer cohort of 22,727 cases aged 20–84 years diagnosed during 1997–2007 from Queensland, Australia. Results Both approaches were viable on this large dataset, and produced similar estimates of the fixed effects. After adding area-level covariates, the between-area variability in survival using multilevel discrete-time models was no longer significant. Spatial inequalities in survival were also markedly reduced after adjusting for aggregated area-level covariates. Only the multilevel approach however, provided an estimation of the contribution of geographical variation to the total variation in survival between individual patients. Conclusions With little difference observed between the two approaches in the estimation of fixed effects, multilevel models should be favored if there is a clear hierarchical data structure and measuring the independent impact of individual- and area-level effects on survival differences is of primary interest. Bayesian spatial analyses may be preferred if spatial correlation between areas is important and if the priority is to assess small-area variations in survival and map spatial patterns. Both approaches can be readily fitted to geographically enabled survival data from international settings
Resumo:
Objective: To provide an overview of the incidence and mortality of female breast cancer for countries in the Asia-Pacific region. Methods: Statistical information about breast cancer was obtained from publicly available cancer registry and mortality databases (such as GLOBOCAN), and supplemented with data requested from individual cancer registries. Rates were directly age-standardised to the Segi World Standard population and trends were analysed using joinpoint models. Results: Breast cancer was the most common type of cancer among females in the region, accounting for 18% of all cases in 2012, and was the fourth most common cause of cancer-related deaths (9%). Although incidence rates remain much higher in New Zealand and Australia, rapid rises in recent years were observed in several Asian countries. Large increases in breast cancer mortality rates also occurred in many areas, particularly Malaysia and Thailand, in contrast to stabilising trends in Hong Kong and Singapore, while decreases have been recorded in Australia and New Zealand. Mortality trends tended to be more favourable for women aged under 50 compared to those who were 50 years or older. Conclusion: It is anticipated that incidence rates of breast cancer in developing countries throughout the Asia-Pacific region will continue to increase. Early detection and access to optimal treatment are the keys to reducing breast cancer-related mortality, but cultural and economic obstacles persist. Consequently, the challenge is to customise breast cancer control initiatives to the particular needs of each country to ensure the best possible outcomes.
Resumo:
Cancer is the leading contributor to the disease burden in Australia. This thesis develops and applies Bayesian hierarchical models to facilitate an investigation of the spatial and temporal associations for cancer diagnosis and survival among Queenslanders. The key objectives are to document and quantify the importance of spatial inequalities, explore factors influencing these inequalities, and investigate how spatial inequalities change over time. Existing Bayesian hierarchical models are refined, new models and methods developed, and tangible benefits obtained for cancer patients in Queensland. The versatility of using Bayesian models in cancer control are clearly demonstrated through these detailed and comprehensive analyses.
Resumo:
description and analysis of geographically indexed health data with respect to demographic, environmental, behavioural, socioeconomic, genetic, and infectious risk factors (Elliott andWartenberg 2004). Disease maps can be useful for estimating relative risk; ecological analyses, incorporating area and/or individual-level covariates; or cluster analyses (Lawson 2009). As aggregated data are often more readily available, one common method of mapping disease is to aggregate the counts of disease at some geographical areal level, and present them as choropleth maps (Devesa et al. 1999; Population Health Division 2006). Therefore, this chapter will focus exclusively on methods appropriate for areal data...
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 x 10(-8)
Resumo:
Disease maps are effective tools for explaining and predicting patterns of disease outcomes across geographical space, identifying areas of potentially elevated risk, and formulating and validating aetiological hypotheses for a disease. Bayesian models have become a standard approach to disease mapping in recent decades. This article aims to provide a basic understanding of the key concepts involved in Bayesian disease mapping methods for areal data. It is anticipated that this will help in interpretation of published maps, and provide a useful starting point for anyone interested in running disease mapping methods for areal data. The article provides detailed motivation and descriptions on disease mapping methods by explaining the concepts, defining the technical terms, and illustrating the utility of disease mapping for epidemiological research by demonstrating various ways of visualising model outputs using a case study. The target audience includes spatial scientists in health and other fields, policy or decision makers, health geographers, spatial analysts, public health professionals, and epidemiologists.