64 resultados para TRACTION
Resumo:
The concept of star rating council facilities has progressively gained traction in Australia following the work of Dean Taylor at Marochy Shire Council in Queensland in 2006 – 2007 and more recently by the Victorian STEP asset management program. The following paper provides a brief discussion on the use and merits of star rating within community asset management. We suggest that the current adoption of the star rating system to manage community investment in services is lacking in consistency. It is suggested that the major failing is a lack of clear understanding in the purpose being served by the systems. The discussion goes on to make some recommendations on how the concept of a star system could be further enhanced to serve the needs of our communities better.
Resumo:
Six Sigma provides a framework for quality improvement and business excellence. Introduced in the 1980s in manufacturing, the concept of Six Sigma has gained popularity in service organizations. After initial success in healthcare and banking, Six Sigma has gradually gained traction in other types of service industries, including hotels and lodging. Starwood Hotels and Resorts was the first hospitality giant to embrace Six Sigma. In 2001, Starwood adopted the method to develop innovative, customer-focused solutions and to transfer these solutions throughout the global organization. To analyze Starwood's use of Six Sigma, the authors collected data from articles, interviews, presentations and speeches published in magazines, newspapers and Web sites. This provided details to corroborate information, and they also made inferences from these sources. Financial metrics can explain the success of Six Sigma in any organization. There was no shortage of examples of Starwood's success resulting from Six Sigma project metrics uncovered during the research.
Resumo:
‘Hooning’ constitutes a set of illegal and high-risk vehicle related activities typically performed by males aged 17-25, a group that is over-represented in road trauma statistics. This study used an online survey of 422 participants to test the efficacy of the Five Factor Model of Personality in predicting ‘loss of traction’ (LOT) hooning behaviour. Drivers who engaged in LOT behaviour scored significantly lower on the factor of Agreeableness than those who did not. Regression analyses indicated that the Five Factor Model of Personality was a significant predictor of LOT behaviour over and above sex and age, although Agreeableness was the only significant personality factor in the model. The findings may be used to better understand those drivers likely to engage in LOT behaviours. Road safety advertising and educational campaigns can target less socially agreeable drivers, and aim to encourage more agreeable attitudes to driving, particularly for younger male drivers.
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
Railway signaling facilitates two main functions, namely, train detection and train control, in order to maintain safe separations among the trains. Track circuits are the most commonly used train detection means with the simple open/close circuit principles; and subsequent adoption of axle counters further allows the detection of trains under adverse track conditions. However, with electrification and power electronics traction drive systems, aggravated by the electromagnetic interference in the vicinity of the signaling system, railway engineers often find unstable or even faulty operations of track circuits and axle counting systems, which inevitably jeopardizes the safe operation of trains. A new means of train detection, which is completely free from electromagnetic interference, is therefore required for the modern railway signaling system. This paper presents a novel optical fiber sensor signaling system. The sensor operation, field setup, axle detection solution set, and test results of an installation in a trial system on a busy suburban railway line are given.
Resumo:
Routing trains within passenger stations in major cities is a common scheduling problem for railway operation. Various studies have been undertaken to derive and formulate solutions to this route allocation problem (RAP) which is particularly evident in mainland China nowadays because of the growing traffic demand and limited station capacity. A reasonable solution must be selected from a set of available RAP solutions attained in the planning stage to facilitate station operation. The selection is however based on the experience of the operators only and objective evaluation of the solutions is rarely addressed. In order to maximise the utilisation of station capacity while maintaining service quality and allowing for service disturbance, quantitative evaluation of RAP solutions is highly desirable. In this study, quantitative evaluation of RAP solutions is proposed and it is enabled by a set of indices covering infrastructure utilisation, buffer times and delay propagation. The proposed evaluation is carried out on a number of RAP solutions at a real-life busy railway station in mainland China and the results highlight the effectiveness of the indices in pinpointing the strengths and weaknesses of the solutions. This study provides the necessary platform to improve the RAP solution in planning and to allow train re-routing upon service disturbances.
Resumo:
For decades, the development, construction, track ownership and operation of mainline railways in China have been overseen by the state-owned authorities. From mid-90’s, the mainline railway management has undergone revamps to revitalize the intra-modal competitiveness of railway transportation and to steer it toward the direction of modern business management. With the rapid economic growth; the large-scale expansion of the mainline network; and the increasing expectation on service, the mainline railways in China require further restructuring. Inevitably, a sustainable approach to ensure business viability and service quality in the next few decades is an imminent challenge. This paper reviews the operations and management of mainline railway in China and discusses the possibility of introducing open access market. Drawing the experiences on railway open markets outside China, the discussions include the need and feasibility of railway open market in China; and the suitability and limitations of different models. Particular considerations will be given to the unique characteristics of the mainline railways in China, where the developments across neighbouring regions are unbalanced; freight and passenger services are of similar demands; and the high-speed train operations are operated with low-speed ones in mixed traffic.
Resumo:
Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
Balancing between the provision of high quality of service and running within a tight budget is one of the biggest challenges for most metro railway operators around the world. Conventionally, one possible approach for the operator to adjust the time schedule is to alter the stop time at stations, if other system constraints, such as traction equipment characteristic, are not taken into account. Yet it is not an effective, flexible and economical method because the run-time of a train simply cannot be extended without limitation, and a balance between run-time and energy consumption has to be maintained. Modification or installation of a new signalling system not only increases the capital cost, but also affects the normal train service. Therefore, in order to procure a more effective, flexible and economical means to improve the quality of service, optimisation of train performance by coasting point identification has become more attractive and popular. However, identifying the necessary starting points for coasting under the constraints of current service conditions is no simple task because train movement is attributed by a large number of factors, most of which are non-linear and inter-dependent. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting points and investigates the possible improvement on computation time and fitness of genes.
Resumo:
A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures. The main objective of this paper is to study the effect of the train re-starting strategies on the power demand at substations and the time delay suffered by the trains with the aid of computer simulation. An expert system is a useful tool to select various adoptions of STD and ARL under different operational conditions and system requirements.
Resumo:
Computer simulation has been widely accepted as an essential tool for the analysis of many engineering systems. It is nowadays perceived to be the most readily available and feasible means of evaluating operations in real railway systems. Based on practical experience and theoretical models developed in various applications, this paper describes the design of a general-purpose simulation system for train operations. Its prime objective is to provide a single comprehensive computer-aided engineering tool for most studies on railway operations so that various aspects of the railway systems with different operation characteristics can be investigated and analysed in depth. This system consists of three levels of simulation. The first is a single-train simulator calculating the running time of a train between specific points under different track geometry and traction conditions. The second is a dual-train simulator which is to find the minimum headway between two trains under different movement constraints, such as signalling systems. The third is a whole-system multi-train simulator which carries out process simulation of the real operation of a railway system according to a practical or planned train schedule or headway; and produces an overall evaluation of system performance.
Resumo:
With the advances in computer hardware and software development techniques in the past 25 years, digital computer simulation of train movement and traction systems has been widely adopted as a standard computer-aided engineering tool [1] during the design and development stages of existing and new railway systems. Simulators of different approaches and scales are used extensively to investigate various kinds of system studies. Simulation is now proven to be the cheapest means to carry out performance predication and system behaviour characterisation. When computers were first used to study railway systems, they were mainly employed to perform repetitive but time-consuming computational tasks, such as matrix manipulations for power network solution and exhaustive searches for optimal braking trajectories. With only simple high-level programming languages available at the time, full advantage of the computing hardware could not be taken. Hence, structured simulations of the whole railway system were not very common. Most applications focused on isolated parts of the railway system. It is more appropriate to regard those applications as primarily mechanised calculations rather than simulations. However, a railway system consists of a number of subsystems, such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. These subsystems interact frequently with each other while the trains are moving; and they have their special features in different railway systems. To further complicate the simulation requirements, constraints like track geometry, speed restrictions and friction have to be considered, not to mention possible non-linearities and uncertainties in the system. In order to provide a comprehensive and accurate account of system behaviour through simulation, a large amount of data has to be organised systematically to ensure easy access and efficient representation; the interactions and relationships among the subsystems should be defined explicitly. These requirements call for sophisticated and effective simulation models for each component of the system. The software development techniques available nowadays allow the evolution of such simulation models. Not only can the applicability of the simulators be largely enhanced by advanced software design, maintainability and modularity for easy understanding and further development, and portability for various hardware platforms are also encouraged. The objective of this paper is to review the development of a number of approaches to simulation models. Attention is, in particular, given to models for train movement, power supply systems and traction drives. These models have been successfully used to enable various ‘what-if’ issues to be resolved effectively in a wide range of applications, such as speed profiles, energy consumption, run times etc.
Resumo:
Abstract Being as a relatively new approach of signalling, moving-block scheme significantly increases line capacity, especially on congested railways. This paper describes a simulation system for multi-train operation under moving-block signalling scheme. The simulator can be used to calculate minimum headways and safety characteristics under pre-set timetables or headways and different geographic and traction conditions. Advanced software techniques are adopted to support the flexibility within the simulator so that it is a general-purpose computer-aided design tool to evaluate the performance of moving block signalling.
Resumo:
It has now been over a decade since the concept of creative industries was first put into the public domain through the Creative Industries Mapping Documents developed by the Blair Labour government in Britain. The concept has developed traction globally, but it has also been understood and developed in different ways in Europe, Asia, Australia, New Zealand and North America, as well as through international bodies such as UNCTAD and UNESCO. A review of the policy literature reveals that while questions and issues remain around definitional coherence, there is some degree of consensus emerging about the size, scope and significance of the sectors in question in both advanced and developing economies. At the same time, debate about the concept remains highly animated in media, communication and cultural studies, with its critics dismissing the concept outright as a harbinger of neo-liberal ideology in the cultural sphere. This paper couches such critiques in light of recent debates surrounding the intellectual coherence of the concept of neo-liberalism, arguing that this term itself possesses problems when taken outside of the Anglo-American context in which it originated. It is argued that issues surrounding the nature of participatory media culture, the relationship between cultural production and economic innovation, and the future role of public cultural institutions can be developed from within a creative industries framework, and that writing off such arguments as a priori ideological and flawed does little to advance debates about 21st century information and media culture.