212 resultados para POLYCRYSTALLINE SILICON FILMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality YBa2Cu3O7-δ films grown on (001) single-crystal Y-ZrO2 substrates by pulsed laser deposition have been studied as a function of substrate temperature using transmission electron microscopy. A transition from epitaxial films to c-axis oriented polycrystalline films was observed at 740°C. An intermediate, polycrystalline, BaZrO3 layer was formed from a reaction between the film and the substrate. A dominant orientation relationship of [001] YBCO//[001]int. layer//[001]YSZ and [110] YBCO//[110]int. layer//[100]YSZ was observed. The formation of grain boundaries in the films resulted in an increased microwave surface resistance and a decreased critical-current density. The superconducting transition temperature remained fairly constant at about 90 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene films with different structures were catalytically grown on the silicon substrate pre-deposited with a gold film by hot filament chemical vapor deposition under different conditions, where methane, hydrogen and nitrogen were used as the reactive gases. The morphological and compositional properties of graphene films were studied using advanced instruments including field emission scanning electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structure and composition of graphene films are changed with the variation of the growth conditions. According to the theory related to thermodynamics, the formation of graphene films was theoretically analyzed and the results indicate that the formation of graphene films is related to the fast incorporation and precipitation of carbon. The electron field emission (EFE) properties of graphene films were studied in a high vacuum system of ∼10-6 Pa and the EFE results show that the turn-on field is in a range of 5.2-5.64 V μm-1 and the maximum current density is about 63 μ A cm-2 at the field of 7.7 V μm-1. These results are important to control the structure of graphene films and have the potential applications of graphene in various nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite major advances in the fabrication and characterization of SiC and related materials, there has been no convincing evidence of the synthesis of nanodevice-quality nanoislanded SiC films at low, ultralarge scale integration technology-compatible process temperatures. The authors report on a low-temperature (400 °C) plasma-assisted rf magnetron sputtering deposition of high-quality nanocrystalline SiC films made of uniform-size nanoislands that almost completely cover the Si(100) surface. These nanoislands are chemically pure, highly stoichiometric, have a typical size of 20-35 nm, and contain small (∼5 nm) nanocrystalline inclusions. The properties of nanocrystalline SiC films can be effectively controlled by the plasma parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative custom-designed inductively coupled plasma-assisted RF magnetron sputtering deposition system has been developed to synthesize B-doped microcrystalline silicon thin films using a pure boron sputtering target in a reactive silane and argon gas mixture. Films were deposited using different boron target powers ranging from 0 to 350 W at a substrate temperature of 250 °C. The effect of the boron target power on the structural and electrical properties of the synthesized films was extensively investigated using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and Hall-effect system. It is shown that, with an initial increase of the boron target power from 0 to 300 W, the structural and electrical properties of the B-doped microcrystalline films are improved. However, when the target power is increased too much (e.g. to 350 W), these properties become slightly worse. The variation of the structural and electrical properties of the synthesized B-doped microcrystalline thin films is related to the incorporation of boron atoms during the crystallization and doping of silicon in the inductively coupled plasma-based process. This work is particularly relevant to the microcrystalline silicon-based p-i-n junction solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new deposition technique-inductively coupled plasma-assisted RF magnetron sputtering has been developed to fabricate SiC nanoislanded films. In this system, the plasma production and magnetron sputtering can be controlled independently during the discharge. The deposited SiC nanoislanded films are highly uniform, have excellent stoichiometry, have a typical size of 10-45 nm, and contain small (∼ 6 nm) cubic SiC nanocrystallites embedded in an amorphous SiC matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon thin films were synthesized simultaneously on single-crystal silicon and glass substrates by lowpressure, thermally nonequilibrium, high-density inductively coupled plasma-assisted chemical vapor deposition from the silane precursor gas without any additional hydrogen dilution in a broad range of substrate temperatures from 100 to 500 °C. The effect of the substrate temperature on the morphological, structural and optical properties of the synthesized silicon thin films is systematically studied by X-ray diffractometry, Raman spectroscopy, UV-vis spectroscopy, and scanning electron microscopy. It is shown that the formation of nanocrystalline silicon (nc-Si) occurs when the substrate temperature is higher than 200 °C and that all the deposited nc-Si films have a preferential growth along the (111) direction. However, the mean grain size of the (111) orientation slightly and gradually decreases while the mean grain size of the (220) orientation shows a monotonous increase with the increased substrate temperature from 200 to 500 °C. It is also found that the crystal volume fraction of the synthesized nc-Si thin films has a maximum value of ∼69.1% at a substrate temperature of 300 rather than 500 °C. This rather unexpected result is interpreted through the interplay of thermokinetic surface diffusion and hydrogen termination effects. Furthermore, we have also shown that with the increased substrate temperature from 100 to 500 °C, the optical bandgap is reduced while the growth rates tend to increase. The maximum rates of change of the optical bandgap and the growth rates occur when the substrate temperature is increased from 400 to 500 °C. These results are highly relevant to the development of photovoltaic thin-film solar cells, thin-film transistors, and flat-panel displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma-assisted reactive rf magnetron sputtering deposition is used to fabricate vanadium oxide films on glass, silica and silicon substrates. The process conditions are optimized to synthesize phase-pure vanadium pentoxide (V2O5) featuring a nanocrystalline structure with the predominant (0 0 1) crystallographic orientation, surface morphology with rod-like nanosized grains and very uniform (the non-uniformity does not exceed 4%) coating thickness over large surface areas. The V2O5 films also show excellent and temperature-independent optical transmittance in a broad temperature range (20-95 °C). The results are relevant to the development of smart functional coatings with temperature-tunable properties. © 2007 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of saturation of Ni catalyst nanoparticle patterns of the three different degrees of order, used as a model for the growth of carbon nanotips on Si, is investigated numerically using a complex model that involves surface diffusion and ion motion equations. It is revealed that Ni catalyst patterns of different degrees of order, with Ni nanoparticle sizes up to 12.5 nm, exhibit different kinetics of saturation with carbon on the Si surface. It is shown that in the cases examined (surface coverage in the range of 1-50%, highly disordered Ni patterns) the relative pattern saturation factor calculated as the ratio of average incubation times for the processes conducted in the neutral and ionized gas environments reaches 14 and 3.4 for Ni nanoparticles of 2.5 and 12.5 nm, respectively. In the highly ordered Ni patterns, the relative pattern saturation factor reaches 3 for nanoparticles of 2.5 nm and 2.1 for nanoparticles of 12.5 nm. Thus, more simultaneous saturation of Ni catalyst nanoparticles of sizes in the range up to 12.5 nm, deposited on the Si substrate, can be achieved in the low-temperature plasma environment than with the neutral gas-based process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of numerical simulation of the equilibrium parameters of a low pressure nanopowder-generating discharge in silane for the plasma enhanced chemical vapor deposition (PECVD) of nanostructured silicon-based films are presented. It is shown that a low electron temperature and a low density of negative SiH3 - ions are favorable for the PECVD process. This opens a possibility to predict the main parameters of the reactive plasma and plasma-nucleated nanoparticles, and hence, to control the quality of silicon nanofilms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface of cubic silicon carbide (3C-SiC) hetero-epitaxial films grown on the (111) surface of silicon is a promising template for the subsequent epitaxial growth of III-V semiconductor layers and graphene. We investigate growth and post-growth approaches for controlling the surface roughness of epitaxial SiC to produce an optimal template. We first explore 3C-SiC growth on various degrees of offcut Si(111) substrates, although we observe that the SiC roughness tends to worsen as the degree of offcut increases. Hence we focus on post-growth approaches available on full wafers, comparing chemical mechanical polishing (CMP) and a novel plasma smoothening process. The CMP leads to a dramatic improvement, bringing the SiC surface roughness down to sub-nanometer level, though removing about 200 nm of the SiC layer. On the other hand, our proposed HCl plasma process appears very effective in smoothening selectively the sharpest surface topography, leading up to 30% improvement in SiC roughness with only about 50 nm thickness loss. We propose a simple physical model explaining the action of the plasma smoothening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High conductive graphene films can be grown on metal foils by chemical vapor deposition (CVD). We here analyzed the use of ethanol, an economic precursor, which results also safer than commonly-used methane. A comprehensive range of process parameters were explored in order to obtain graphene films with optimal characteristics in view of their use in optoelectronics and photovoltaics. Commercially-available and electro-polished copper foils were used as substrates. By finely tuning the CVD conditions, we obtained few-layer (2-4) graphene films with good conductivity (-500 Ohm/sq) and optical transmittance around 92-94% at 550 nm on unpolished copper foils. The growth on electro-polished copper provides instead predominantly mono-layer films with lower conductivity (>1000 Ohm/sq) and with a transmittance of 97.4% at 550 nm. As for the device properties, graphene with optimal properties as transparent conductive film were produced by CVD on standard copper with specific process conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I10+ ions to fluences of 1 × 1010 and 1 × 1012 ions/cm2. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate's surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.