312 resultados para HIGH LEVEL CLASSIFICATION
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
Background An increasing body of evidence associates a high level of sitting time with poor health outcomes. The benefits of moderate to vigorous-intensity physical activities to various aspects of health are now well documented; however, individuals may engage in moderate-intensity physical activity for at least 30 minutes on five or more days of the week and still exhibit a high level of sitting time. This purpose of this study was to examine differences in total wellness among adults relative to high/low levels of sitting time combined with insufficient/sufficient physical activity (PA). The construct of total wellness incorporates a holistic approach to the body, mind and spirit components of life, an approach which may be more encompassing than some definitions of health. Methods Data were obtained from 226 adult respondents (27 ± 6 years), including 116 (51%) males and 110 (49%) females. Total PA and total sitting time were assessed with the International Physical Activity Questionnaire (IPAQ) (short-version). The Wellness Evaluation of Lifestyle Inventory was used to assess total wellness. An analysis of covariance (ANCOVA) was utilised to assess the effects of the sitting time/physical activity group on total wellness. A covariate was included to partial out the effects of age, sex and work status (student or employed). Cross-tabulations were used to show associations between the IPAQ derived high/low levels of sitting time with insufficient/sufficient PA and the three total wellness groups (i.e. high level of wellness, moderate wellness and wellness development needed). Results The majority of the participants were located in the high total sitting time and sufficient PA group. There were statistical differences among the IPAQ groups for total wellness [F (2,220) = 32.5 (p <0.001)]. A Chi-square test revealed a significant difference in the distribution of the IPAQ categories within the classification of wellness [χ2 (N = 226) = 54.5, p < .001]. One-hundred percent (100%) of participants who self-rated as high total sitting time/insufficient PA were found in the wellness development needed group. In contrast, 72% of participants who were located in the low total sitting time/sufficient PA group were situated in the moderate wellness group. Conclusion Many participants who meet the physical activity guidelines, in this sample, sit for longer periods of time than the median Australian sitting time. An understanding of the effects of the enhanced PA and reduced sitting time on total wellness can add to the development of public health initiatives. Keywords: IPAQ; The Wellness Evaluation of Lifestyle (WEL); Sedentary lifestyle
Resumo:
Introduction: Work engagement is a recent application of positive psychology and refers to a positive, fulfilling, work-related state of mind characterized by vigor, dedication and absorption. Despite theoretical assumptions, there is little published research on work engagement, due primarily to its recent emergence as a psychological construct. Furthermore, examining work engagement among high-stress occupations, such as police, is useful because police officers are generally characterized as having a high level of work engagement. Previous research has identified job resources (e.g. social support) as antecedents of work engagement. However detailed evaluation of job demands as an antecedent of work engagement within high-stress occupations has been scarce. Thus our second aim was to test job demands (i.e. monitoring demands and problem-solving demands) and job resources (i.e. time control, method control, supervisory support, colleague support, and friend and family support) as antecedents of work engagement among police officers. Method: Data were collected via a self-report online survey from one Australian state police service (n = 1,419). Due to the high number of hypothesized antecedent variables, hierarchical multiple regression analysis was employed rather than structural equation modelling. Results: Work engagement reported by police officers was high. Female officers had significantly higher levels of work engagement than male officers, while officers at mid-level ranks (sergeant) reported the lowest levels of work engagement. Job resources (method control, supervisor support and colleague support) were significant antecedents of three dimensions of work engagement. Only monitoring demands were significant antecedent of the absorption. Conclusion: Having healthy and engaged police officers is important for community security and economic growth. This study identified some common factors which influence work engagement experienced by police officers. However, we also note that excessive work engagement can yield negative outcomes such as psychological distress.
Resumo:
The Queensland University of Technology (QUT) allows the presentation of theses for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of ten published /submitted papers and book chapters of which nine have been published and one is under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of investigating multilevel topologies for high quality and high power applications, with specific emphasis on renewable energy systems. The rapid evolution of renewable energy within the last several years has resulted in the design of efficient power converters suitable for medium and high-power applications such as wind turbine and photovoltaic (PV) systems. Today, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements controlled by powerful processor systems. However, it is hard to connect the traditional converters to the high and medium voltage grids, as a single power switch cannot stand at high voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Besides this important feature, multilevel converters have the capability to generate stepped waveforms. Consequently, in comparison with conventional two-level inverters, they present lower switching losses, lower voltage stress across loads, lower electromagnetic interference (EMI) and higher quality output waveforms. These properties enable the connection of renewable energy sources directly to the grid without using expensive, bulky, heavy line transformers. Additionally, they minimize the size of the passive filter and increase the durability of electrical devices. However, multilevel converters have only been utilised in very particular applications, mainly due to the structural limitations, high cost and complexity of the multilevel converter system and control. New developments in the fields of power semiconductor switches and processors will favor the multilevel converters for many other fields of application. The main application for the multilevel converter presented in this work is the front-end power converter in renewable energy systems. Diode-clamped and cascade converters are the most common type of multilevel converters widely used in different renewable energy system applications. However, some drawbacks – such as capacitor voltage imbalance, number of components, and complexity of the control system – still exist, and these are investigated in the framework of this thesis. Various simulations using software simulation tools are undertaken and are used to study different cases. The feasibility of the developments is underlined with a series of experimental results. This thesis is divided into two main sections. The first section focuses on solving the capacitor voltage imbalance for a wide range of applications, and on decreasing the complexity of the control strategy on the inverter side. The idea of using sharing switches at the output structure of the DC-DC front-end converters is proposed to balance the series DC link capacitors. A new family of multioutput DC-DC converters is proposed for renewable energy systems connected to the DC link voltage of diode-clamped converters. The main objective of this type of converter is the sharing of the total output voltage into several series voltage levels using sharing switches. This solves the problems associated with capacitor voltage imbalance in diode-clamped multilevel converters. These converters adjust the variable and unregulated DC voltage generated by renewable energy systems (such as PV) to the desirable series multiple voltage levels at the inverter DC side. A multi-output boost (MOB) converter, with one inductor and series output voltage, is presented. This converter is suitable for renewable energy systems based on diode-clamped converters because it boosts the low output voltage and provides the series capacitor at the output side. A simple control strategy using cross voltage control with internal current loop is presented to obtain the desired voltage levels at the output voltage. The proposed topology and control strategy are validated by simulation and hardware results. Using the idea of voltage sharing switches, the circuit structure of different topologies of multi-output DC-DC converters – or multi-output voltage sharing (MOVS) converters – have been proposed. In order to verify the feasibility of this topology and its application, steady state and dynamic analyses have been carried out. Simulation and experiments using the proposed control strategy have verified the mathematical analysis. The second part of this thesis addresses the second problem of multilevel converters: the need to improve their quality with minimum cost and complexity. This is related to utilising asymmetrical multilevel topologies instead of conventional multilevel converters; this can increase the quality of output waveforms with a minimum number of components. It also allows for a reduction in the cost and complexity of systems while maintaining the same output quality, or for an increase in the quality while maintaining the same cost and complexity. Therefore, the asymmetrical configuration for two common types of multilevel converters – diode-clamped and cascade converters – is investigated. Also, as well as addressing the maximisation of the output voltage resolution, some technical issues – such as adjacent switching vectors – should be taken into account in asymmetrical multilevel configurations to keep the total harmonic distortion (THD) and switching losses to a minimum. Thus, the asymmetrical diode-clamped converter is proposed. An appropriate asymmetrical DC link arrangement is presented for four-level diode-clamped converters by keeping adjacent switching vectors. In this way, five-level inverter performance is achieved for the same level of complexity of the four-level inverter. Dealing with the capacitor voltage imbalance problem in asymmetrical diodeclamped converters has inspired the proposal for two different DC-DC topologies with a suitable control strategy. A Triple-Output Boost (TOB) converter and a Boost 3-Output Voltage Sharing (Boost-3OVS) converter connected to the four-level diode-clamped converter are proposed to arrange the proposed asymmetrical DC link for the high modulation indices and unity power factor. Cascade converters have shown their abilities and strengths in medium and high power applications. Using asymmetrical H-bridge inverters, more voltage levels can be generated in output voltage with the same number of components as the symmetrical converters. The concept of cascading multilevel H-bridge cells is used to propose a fifteen-level cascade inverter using a four-level H-bridge symmetrical diode-clamped converter, cascaded with classical two-level Hbridge inverters. A DC voltage ratio of cells is presented to obtain maximum voltage levels on output voltage, with adjacent switching vectors between all possible voltage levels; this can minimize the switching losses. This structure can save five isolated DC sources and twelve switches in comparison to conventional cascade converters with series two-level H bridge inverters. To increase the quality in presented hybrid topology with minimum number of components, a new cascade inverter is verified by cascading an asymmetrical four-level H-bridge diode-clamped inverter. An inverter with nineteen-level performance was achieved. This synthesizes more voltage levels with lower voltage and current THD, rather than using a symmetrical diode-clamped inverter with the same configuration and equivalent number of power components. Two different predictive current control methods for the switching states selection are proposed to minimise either losses or THD of voltage in hybrid converters. High voltage spikes at switching time in experimental results and investigation of a diode-clamped inverter structure raised another problem associated with high-level high voltage multilevel converters. Power switching components with fast switching, combined with hard switched-converters, produce high di/dt during turn off time. Thus, stray inductance of interconnections becomes an important issue and raises overvoltage and EMI issues correlated to the number of components. Planar busbar is a good candidate to reduce interconnection inductance in high power inverters compared with cables. The effect of different transient current loops on busbar physical structure of the high-voltage highlevel diode-clamped converters is highlighted. Design considerations of proper planar busbar are also presented to optimise the overall design of diode-clamped converters.
Resumo:
Delegation, from a technical point of view, is widely considered as a potential approach in addressing the problem of providing dynamic access control decisions in activities with a high level of collaboration, either within a single security domain or across multiple security domains. Although delegation continues to attract significant attention from the research community, presently, there is no published work that presents a taxonomy of delegation concepts and models. This article intends to address this gap by presenting a set of taxonomic criteria relevant to the concept of delegation. This article also applies the taxonomy to a selection of significant delegation models published in the literature.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
The issues involved in agricultural biodiversity are important and interesting areas for the application of economic theory. However, very little theoretical and empirical work has been undertaken to understand the benefits of conserving agricultural biodiversity. Accordingly, the main objectives of this PhD thesis are to: (1) Investigate farmers’ valuation of agricultural biodiversity; (2) Identify factors influencing farmers’ demand for agricultural biodiversity; (3) Examine farmers’ demand for biodiversity rich farming systems; (4) Investigate the relationship between agricultural biodiversity and farm level technical efficiency. This PhD thesis investigates these issues by using primary data in small-scale farms, along with secondary data from Sri Lanka. The overall findings of the thesis can be summarized as follows. Firstly, owing to educational and poverty issues of those being interviewed, some policy makers in developed countries question whether non-market valuation techniques such as Choice Experiment (CE) can be applied to developing countries such as Sri Lanka. The CE study in this thesis indicates that carefully designed and pre-tested nonmarket valuation techniques can be applied in developing countries with a high level of reliability. The CE findings support the priori assumption that small-scale farms and their multiple attributes contribute positively and significantly to the utility of farm families in Sri Lanka. Farmers have strong positive attitudes towards increasing agricultural biodiversity in rural areas. This suggests that these attitudes can be the basis on which appropriate policies can be introduced to improve agricultural biodiversity. Secondly, the thesis identifies the factors which influence farmers’ demand for agricultural biodiversity and farmers’ demands on biodiversity rich farming systems. As such they provide important tools for the implementation of policies designed to avoid the loss agricultural biodiversity which is shown to be a major impediment to agricultural growth and sustainable development in a number of developing countries. The results illustrate that certain key household, market and other characteristics (such as agricultural subsidies, percentage of investment of owned money and farm size) are the major determinants of demand for agricultural biodiversity on small-scale farms. The significant household characteristics that determine crop and livestock diversity include household member participation on the farm, off-farm income, shared labour, market price fluctuations and household wealth. Furthermore, it is shown that all the included market characteristics as well as agricultural subsidies are also important determinants of agricultural biodiversity. Thirdly, it is found that when the efficiency of agricultural production is measured in practice, the role of agricultural biodiversity has rarely been investigated in the literature. The results in the final section of the thesis show that crop diversity, livestock diversity and mix farming system are positively related to farm level technical efficiency. In addition to these variables education level, number of separate plots, agricultural extension service, credit access, membership of farm organization and land ownerships are significant and direct policy relevant variables in the inefficiency model. The results of the study therefore have important policy implications for conserving agricultural biodiversity in Sri Lanka.
Resumo:
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia, but the linkages of the wetlands and climate zones with BFV transmission remain unclear. We aimed to examine the relationship between the wetlands, climate zones and BFV risk in Queensland, Australia. Data on the wetlands, climate zones, population and BFV cases for the period 1992 to 2008 were obtained from relevant government agencies. BFV risk was grouped as low-, medium- and high-level based on BFV incidence percentiles. The buffer zones around each BFV case were made using 1, 5, 10, 15, 20, 25 and 50 km distances. We performed a discriminant analysis to determine the differences between wetland classes and BFV risk within each climate zone. The discriminant analyses show that saline 1, riverine and saline tidal influence were the most significant contributors to BFV risk in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. These models had classification accuracies of 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV risk varies with wetland class and climate zone. The discriminant analysis is a useful tool to quantify the links between wetlands, climate zones and BFV risk.
Resumo:
Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.
Resumo:
This thesis develops the hardware and software framework for an integrated navigation system. Dynamic data fusion algorithms are used to develop a system with a high level of resistance to the typical problems that affect standard navigation systems.
Resumo:
Collisions among trains and cars at road/rail level crossings (LXs) can have severe consequences such as high level of fatalities, injuries and significant financial losses. As communication and positioning technologies have significantly advanced, implementing vehicular ad hoc networks (VANETs) in the vicinity of unmanned LXs, generally LXs without barriers, is seen as an efficient and effective approach to mitigate or even eliminate collisions without imposing huge infrastructure costs. VANETs necessitate unique communication strategies, in which routing protocols take a prominent part in their scalability and overall performance, through finding optimised routes quickly and with low bandwidth overheads. This article studies a novel geo-multicast framework that incorporates a set of models for communication, message flow and geo-determination of endangered vehicles with a reliable receiver-based geo-multicast protocol to support cooperative level crossings (CLXs), which provide collision warnings to the endangered motorists facing road/rail LXs without barriers. This framework is designed and studied as part of a $5.5 m Government and industry funded project, entitled 'Intelligent-Transport-Systems to improve safety at road/rail crossings'. Combined simulation and experimental studies of the proposed geo-multicast framework have demonstrated promising outcomes as cooperative awareness messages provide actionable critical information to endangered drivers who are identified by CLXs.
Resumo:
Term-based approaches can extract many features in text documents, but most include noise. Many popular text-mining strategies have been adapted to reduce noisy information from extracted features; however, text-mining techniques suffer from low frequency. The key issue is how to discover relevance features in text documents to fulfil user information needs. To address this issue, we propose a new method to extract specific features from user relevance feedback. The proposed approach includes two stages. The first stage extracts topics (or patterns) from text documents to focus on interesting topics. In the second stage, topics are deployed to lower level terms to address the low-frequency problem and find specific terms. The specific terms are determined based on their appearances in relevance feedback and their distribution in topics or high-level patterns. We test our proposed method with extensive experiments in the Reuters Corpus Volume 1 dataset and TREC topics. Results show that our proposed approach significantly outperforms the state-of-the-art models.
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
This study was conducted to assess the vulnerability of coastal road infrastructures due to climate change induced sea level rise and extreme weather conditions through the estimation of road subgrade strength reduction as a result of changes in soil moisture content. The study area located in the Gold Coast, Australia highlighted that the risk is significant. In wet seasons or areas with wet condition, the groundwater table is already high, so even a small change in the groundwater table can raise the risk of inundation; particularly, in areas with existing shallow groundwater. The predicted risk of a high groundwater table on road infrastructure is a long-term hazard. Therefore, there is time to undertake some management plans to decrease the possible risks, for instance, some deep root plants could be planted along the roads with a high level of risk, to decrease the groundwater table elevation.