245 resultados para Embryonic development
Resumo:
This paper was retracted by the Journal of Stem Cells and Development on February 15, 2013.
Resumo:
National and international competition demands that Australian organisations become more competent at making the strategic technological decisions that impact their future in the international business economy. A new subject unit, Management of Technology is now offered in the popular Master of Project Management and Master of Business Administration programs at the Queensland University of Technology. This cross-disciplinary subject provides students with a theoretical foundation and practical tools to improve the efficiency and competitiveness of technically-oriented organisations. Applied case studies—shown to be the most appropriate mode of learning for mature-age students—form an integral component of the teaching program. In the first offerings of this subject during 1995 and 1996, American case studies were used. QUT has now supported the development of Australian case study packages for technology management through its Teaching and Learning Grants Scheme. The first case developed—Inland Oil Refiners’ Microstill Project—was completed in early 1996. A newly developed case—Automated Door Opening System for Wheelchair Access—is currently being completed. This case (comprising case study documentation and video presentation) tracks a cross-disciplinary product development driven by legislative and community pressures. It also reinforces the importance of personal relationships in the technology and business development that has taken this young Brisbane-based company from its embryonic beginnings on the Queensland Cultural Centre in 1994 to a national and export-focussed organisation in 1997. This paper reviews the need to develop Australian case material in Management of Technology, discusses the case study documentation and supporting video developed, and application of the case study approach in this teaching initiative in QUT’s Master of Project Management and Master of Business Administration programs.
Resumo:
Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly L: -lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.
Resumo:
The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.
Resumo:
Tissue remodeling is a key process involved in normal development, wound healing, bone remodeling, and embryonic implantation, as well as pathological conditions such as tumor invasion and metastasis, and angiogenesis. The degradation of the extracellular matrix that is associated with those processes is mediated by a number of families of extracellular proteinases. These families include the serine proteinases, such as the plasminogen-urokinase plasminogen activator system and leukocyte elastases, the cysteine proteinases, like cathepsin D and L, and the zinc-dependent matrix metalloproteinases (MMPs). Accumulating evidence has highlighted the central role of MMP-driven extracellular matrix remodeling in mammary gland development and breast cancer.