322 resultados para Driver-Vehicle System Modeling.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
This paper reviews the use of multi-agent systems to model the impacts of high levels of photovoltaic (PV) system penetration in distribution networks and presents some preliminary data obtained from the Perth Solar City high penetration PV trial. The Perth Solar City trial consists of a low voltage distribution feeder supplying 75 customers where 29 consumers have roof top photovoltaic systems. Data is collected from smart meters at each consumer premises, from data loggers at the transformer low voltage (LV) side and from a nearby distribution network SCADA measurement point on the high voltage side (HV) side of the transformer. The data will be used to progressively develop MAS models.
Resumo:
Unlicensed driving remains a serious problem for road safety, despite ongoing improvements in traffic law enforcement practices and technology. While it does not play a direct causative role in road crashes, unlicensed driving undermines the integrity of the driver licensing system and is associated with a range of high-risk behaviours. The Queensland Transport and Main Roads (TMR) commissioned a program of research with separate components relating to different aspects of unlicensed driving. Drawing on Australian and international studies, the Unlicensed and Unregistered Vehicle (UUV) project explores the nature of unlicensed driving in Queensland, consolidates the available research evidence and identifies gaps in current knowledge relating to the driving behaviours of unlicensed drivers.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behavior change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, it is crucial to understand the human factors related theories and practices which will inform the design of an in-vehicle Human Machine Interface (HMI) that could provide real-time driver feedback and consequently improve both fuel efficiency and safety. This paper provides a comprehensive review of the current state of published literature on in-vehicle systems to identify and evaluate the impact of eco-driving and safety feedback systems. This paper also discusses how these factors may conflict with one another and have a negative effect on road safety, while also exploring possible eco-driving practices that could encourage more sustainable, environmentally-conscious and safe driving behavior. The review revealed a lack of comprehensive theoretical research integrating eco-driving and safe driving, and no current available HMI covering both aspects simultaneously. Furthermore, the review identified that some eco-driving in-vehicle systems may enhance fuel efficiency without compromising safety. The review has identified a range of concepts which can be developed to influence driver acceptance of safety and eco-driving systems within the area of HMI. This can promote new research aimed at enhancing our understanding of the relationship between eco-driving and safety from the human factors viewpoint. This provides a foundation for developing innovative, persuasive and acceptable in-vehicle HMI systems to improve fuel efficiency and road safety.
Resumo:
The learner licence is an important component of the graduated driver licensing system. This research describes the driving and licensing experiences of learner drivers in Queensland and New South Wales licensed prior to the changes made to the system in mid-2007. The sample consisted of 392 participants who completed a telephone interview just after they obtained their provisional licence. The results suggest that learner drivers in the two states had many similar experiences when they were obtaining a learner licence. However, once a learner licence was obtained, there were differences in the amount of practice, the supervisor learners practised with, the type of vehicle they used and the amount of unlicensed driving. This paper provides important baseline descriptive data that can be used to measure the impact of the changes that were introduced to the learner licence phase in mid-2007 in both of these states.
Resumo:
Policy decisions are frequently influenced by more than research results alone. This review examines one road safety countermeasure, graduated driver licensing, in three jurisdictions and identifies how the conflict between mobility and safety goals can influence policy decisions relating to this countermeasure. Evaluations from around the world of graduated driver licensing have demonstrated clear reductions in crashes for young drivers. However, the introduction of this countermeasure may be affected, both positively and negatively, by the conflict some policy makers experience between ensuring individuals remain both mobile and safe as drivers. This review highlights how this conflict in policy decision making can serve to either facilitate or hinder the introduction of graduated driver licensing systems. However, policy makers whose focus on mobility is too strong when compared with safety may be mistaken, with evidence suggesting that after a graduated driver licensing system is introduced young drivers adapt their behaviour to the new system and remain mobile. As a result, policy makers should consciously acknowledge the conflict between mobility and safety and consider an appropriate balance in order to introduce these systems. Improvements to the licensing system can then be made in an incremental manner as the balance between these two priorities change. Policy makers can achieve an appropriate balance by using empirical evidence as a basis for their decisions.
Resumo:
The value of business process models is dependent not only on the choice of graphical elements in the model, but also on their annotation with additional textual and graphical information. This research discusses the use of text and icons for labeling the graphical constructs in a process model. We use two established verb classification schemes to examine the choice of activity labels in process modeling practice. Based on our findings, we synthesize a set of twenty-five activity label categories. We propose a systematic approach for graphically representing these label categories through the use of graphical icons, such that the resulting process models are easier and more readily understandable by end users. Our findings contribute to an ongoing stream of research investigating the practice of process modeling and thereby contribute to the body of knowledge about conceptual modeling quality overall.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Trajectory design for Autonomous Underwater Vehicles (AUVs) is of great importance to the oceanographic research community. Intelligent planning is required to maneuver a vehicle to high-valued locations for data collection. We consider the use of ocean model predictions to determine the locations to be visited by an AUV, which then provides near-real time, in situ measurements back to the model to increase the skill of future predictions. The motion planning problem of steering the vehicle between the computed waypoints is not considered here. Our focus is on the algorithm to determine relevant points of interest for a chosen oceanographic feature. This represents a first approach to an end to end autonomous prediction and tasking system for aquatic, mobile sensor networks. We design a sampling plan and present experimental results with AUV retasking in the Southern California Bight (SCB) off the coast of Los Angeles.
Resumo:
The value and effectiveness of driver training as a means of improving driver behaviour and road safety continues to fuel research and societal debates. Knowledge about what are the characteristics of safe driving that need to be learnt is extensive. Research has shown that young drivers are over represented in crash statistics. The encouraging fact is that novice drivers have shown improvement in road scanning pattern after training. This paper presents a driver behaviour study conducted on a closed circuit track. A group of experienced and novice drivers performed repeated multiple manoeuvres (i.e. turn, overtake and lane change) under identical conditions Variables related to the driver, vehicle and environment were recorded in a research vehicle equipped with multiple in-vehicle sensors such as GPS accelerometers, vision processing, eye tracker and laser scanner. Each group exhibited consistently a set of driving pattern characterising a particular group. Behaviour such as the indicator usage before lane change, following distance while performing a manoeuvre were among the consistent observed behaviour differentiating novice from experienced drivers. This paper will highlight the results of our study and emphasize the need for effective driver training programs focusing on young and novice drivers.
Resumo:
Traditional crash prediction models, such as generalized linear regression models, are incapable of taking into account the multilevel data structure, which extensively exists in crash data. Disregarding the possible within-group correlations can lead to the production of models giving unreliable and biased estimates of unknowns. This study innovatively proposes a -level hierarchy, viz. (Geographic region level – Traffic site level – Traffic crash level – Driver-vehicle unit level – Vehicle-occupant level) Time level, to establish a general form of multilevel data structure in traffic safety analysis. To properly model the potential cross-group heterogeneity due to the multilevel data structure, a framework of Bayesian hierarchical models that explicitly specify multilevel structure and correctly yield parameter estimates is introduced and recommended. The proposed method is illustrated in an individual-severity analysis of intersection crashes using the Singapore crash records. This study proved the importance of accounting for the within-group correlations and demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in modeling multilevel structure of traffic crash data.
Resumo:
Study Aims Describe how parents and other private supervisors have responded to the changes made to the Queensland graduated driver licensing system in mid-2007 Examine differences in the experiences and perceptions of the parents and non-parents Method Combination of convenience and snowball sampling Survey administered by the internet Survey conducted between July 2009 and May 2010 Approximately 15-20 minutes to complete $20 reimbursement for participation
Resumo:
The learner licence, within a graduated driver licensing system, provides new drivers with the opportunity to learn to drive under the supervision of a more experienced driver. The Queensland graduated driver licensing system requires learner drivers to record a minimum of 100 logbook hours of supervised practice with the support of parents appearing critical to ensure that this is achieved. This paper examines differences between mothers and fathers who supervise learner drivers. Mothers and fathers from Queensland who had recently supervised their child while they learnt to drive completed an internet survey about their experiences. It appears that one strategy that parents use to provide practice hours is for the child to drive themselves or their parents to or from activities that they would have attended anyway in addition to undertaking special trips in the car for the purposes of practising. The results suggest that mothers, when compared with fathers, consider driving at all stages of licensure riskier and that mothers provided more hours of supervision than fathers. However, despite this, there are limited differences between how frequently mothers and fathers provide different driving experiences such as deliberately practising in suburban areas or with passengers in the car. This research fills a gap in the literature by providing important information about the way in which parents supervise their children while they are driving on a learner licence as well as identifying some of the differences and similarities between mothers and fathers.
Resumo:
Like most Australian states, the New South Wales Graduated Driver Licensing system requires all provisionally licensed drivers to display ‘P plates’ on their vehicle to indicate their licence status and facilitate enforcement. This paper examines whether the display of P plates increases compliance with driving laws in New South Wales. The driving behaviours of provisional drivers who reported always displaying their P plates were compared with those of drivers who sometimes drove without displaying their P plates. While no differences were found between the two groups on some behaviours, provisional drivers who did not always display their P plates indicated that they were less likely to obey the provisional speed limit and more likely to break the road rules if they knew they would not be caught. These results suggest that the requirement to display a P plate remains a priority to facilitate more general traffic law enforcement initiatives.
Resumo:
Graduated licensing has been identified as the most promising approach to reducing the crash risk of novice drivers. However, research suggests that the effectiveness of graduated licensing appears to differ between urban and rural novice drivers and according to race or ethnicity. Extensive supervised driving practice as a learner driver is an important component of graduated licensing systems in Australia and many other countries. Earlier CARRS-Q research identified that falsification of logbooks was more common among particular demographic groups. The factors underlying this are not well understood. It is unclear whether this reflects a lack of understanding of the importance of supervised practice (given that it is not a licensing requirement in many countries of origin), or it reflects lack of access to vehicles and supervising drivers, or whether there is less respect for driver licensing requirements among some groups. It is possible that the importance of these factors may differ across ethnic groups, depending on socioeconomic factors and cultural attitudes to road safety. In an attempt to better understand these issues, this study presents some preliminary results of focus groups examining the experience of the Queensland Graduated Driver Licensing System by Korean-Australian novice drivers and their parents.