647 resultados para Database management.
Resumo:
In response to a focus on reading, this paper examines the notion of reading online; as such it uses the term ‘networked reading’ to describe any act of reading in an online or digital environment. In accordance with this notion of ‘networked’ reading, the paper provides a broad introduction to AustLit: the Australian Literature Resource. This is followed by an examination of a suite of services and digital tools (LORE) developed by the Aus-e-Lit project that extends the scope of AustLit records and facilitates links to external resources. The focus of the final section of the paper is on a collection of Full Text resources located within the AustLit subset Children’s Literature Digital Resources (CLDR). It proposes a number of ways in which these texts, and an accompanying anthology of critical articles, can be utilised in classrooms across the Primary, Middle and Senior School spectrum.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is also proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Experiments based on several real-world data collections demonstrate that WebPut outperforms existing approaches.
Resumo:
A building information model (BIM) provides a rich representation of a building's design. However, there are many challenges in getting construction-specific information from a BIM, limiting the usability of BIM for construction and other downstream processes. This paper describes a novel approach that utilizes ontology-based feature modeling, automatic feature extraction based on ifcXML, and query processing to extract information relevant to construction practitioners from a given BIM. The feature ontology generically represents construction-specific information that is useful for a broad range of construction management functions. The software prototype uses the ontology to transform the designer-focused BIM into a construction-specific feature-based model (FBM). The formal query methods operate on the FBM to further help construction users to quickly extract the necessary information from a BIM. Our tests demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
The design and construction community has shown increasing interest in adopting building information models (BIMs). The richness of information provided by BIMs has the potential to streamline the design and construction processes by enabling enhanced communication, coordination, automation and analysis. However, there are many challenges in extracting construction-specific information out of BIMs. In most cases, construction practitioners have to manually identify the required information, which is inefficient and prone to error, particularly for complex, large-scale projects. This paper describes the process and methods we have formalized to partially automate the extraction and querying of construction-specific information from a BIM. We describe methods for analyzing a BIM to query for spatial information that is relevant for construction practitioners, and that is typically represented implicitly in a BIM. Our approach integrates ifcXML data and other spatial data to develop a richer model for construction users. We employ custom 2D topological XQuery predicates to answer a variety of spatial queries. The validation results demonstrate that this approach provides a richer representation of construction-specific information compared to existing BIM tools.
Resumo:
Due to the development of XML and other data models such as OWL and RDF, sharing data is an increasingly common task since these data models allow simple syntactic translation of data between applications. However, in order for data to be shared semantically, there must be a way to ensure that concepts are the same. One approach is to employ commonly usedschemas—called standard schemas —which help guarantee that syntactically identical objects have semantically similar meanings. As a result of the spread of data sharing, there has been widespread adoption of standard schemas in a broad range of disciplines and for a wide variety of applications within a very short period of time. However, standard schemas are still in their infancy and have not yet matured or been thoroughly evaluated. It is imperative that the data management research community takes a closer look at how well these standard schemas have fared in real-world applications to identify not only their advantages, but also the operational challenges that real users face. In this paper, we both examine the usability of standard schemas in a comparison that spans multiple disciplines, and describe our first step at resolving some of these issues in our Semantic Modeling System. We evaluate our Semantic Modeling System through a careful case study of the use of standard schemas in architecture, engineering, and construction, which we conducted with domain experts. We discuss how our Semantic Modeling System can help the broader problem and also discuss a number of challenges that still remain.
Resumo:
In recent years, there has been a growing interest from the design and construction community to adopt Building Information Models (BIM). BIM provides semantically-rich information models that explicitly represent both 3D geometric information (e.g., component dimensions), along with non-geometric properties (e.g., material properties). While the richness of design information offered by BIM is evident, there are still tremendous challenges in getting construction-specific information out of BIM, limiting the usability of these models for construction. In this paper, we describe our approach for extracting construction-specific design conditions from a BIM model based on user-defined queries. This approach leverages an ontology of features we are developing to formalize the design conditions that affect construction. Our current implementation analyzes the component geometry and topological relationships between components in a BIM model represented using the Industry Foundation Classes (IFC) to identify construction features. We describe the reasoning process implemented to extract these construction features, and provide a critique of the IFC’s to support the querying process. We use examples from two case studies to illustrate the construction features, the querying process, and the challenges involved in deriving construction features from an IFC model.
Resumo:
Although topic detection and tracking techniques have made great progress, most of the researchers seldom pay more attention to the following two aspects. First, the construction of a topic model does not take the characteristics of different topics into consideration. Second, the factors that determine the formation and development of hot topics are not further analyzed. In order to correctly extract news blog hot topics, the paper views the above problems in a new perspective based on the W2T (Wisdom Web of Things) methodology, in which the characteristics of blog users, context of topic propagation and information granularity are investigated in a unified way. The motivations and features of blog users are first analyzed to understand the characteristics of news blog topics. Then the context of topic propagation is decomposed into the blog community, topic network and opinion network, respectively. Some important factors such as the user behavior pattern, opinion leader and network opinion are identified to track the development trends of news blog topics. Moreover, a blog hot topic detection algorithm is proposed, in which news blog hot topics are identified by measuring the duration, topic novelty, attention degree of users and topic growth. Experimental results show that the proposed method is feasible and effective. These results are also useful for further studying the formation mechanism of opinion leaders in blogspace.
Resumo:
We propose a cluster ensemble method to map the corpus documents into the semantic space embedded in Wikipedia and group them using multiple types of feature space. A heterogeneous cluster ensemble is constructed with multiple types of relations i.e. document-term, document-concept and document-category. A final clustering solution is obtained by exploiting associations between document pairs and hubness of the documents. Empirical analysis with various real data sets reveals that the proposed meth-od outperforms state-of-the-art text clustering approaches.
Resumo:
We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation, RC attempts at linking entity pairs between two entity lists under the relation. To accomplish the RC goals, we propose to formulate search queries for each query entity α based on some auxiliary information, so that to detect its target entity β from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC.
Resumo:
Big data is certainly the buzz term in executive networking circles at the moment. Heralded by management consultancies and research organisations alike as the next big thing in business efficiency, it is shooting up the Gartner hype cycle to the giddy heights of the peak of inflated expectations before it tumbles down in to the trough of disillusionment
Resumo:
With the growing size and variety of social media files on the web, it’s becoming critical to efficiently organize them into clusters for further processing. This paper presents a novel scalable constrained document clustering method that harnesses the power of search engines capable of dealing with large text data. Instead of calculating distance between the documents and all of the clusters’ centroids, a neighborhood of best cluster candidates is chosen using a document ranking scheme. To make the method faster and less memory dependable, the in-memory and in-database processing are combined in a semi-incremental manner. This method has been extensively tested in the social event detection application. Empirical analysis shows that the proposed method is efficient both in computation and memory usage while producing notable accuracy.
Resumo:
In a pilot application based on web search engine calledWeb-based Relation Completion (WebRC), we propose to join two columns of entities linked by a predefined relation by mining knowledge from the web through a web search engine. To achieve this, a novel retrieval task Relation Query Expansion (RelQE) is modelled: given an entity (query), the task is to retrieve documents containing entities in predefined relation to the given one. Solving this problem entails expanding the query before submitting it to a web search engine to ensure that mostly documents containing the linked entity are returned in the top K search results. In this paper, we propose a novel Learning-based Relevance Feedback (LRF) approach to solve this retrieval task. Expansion terms are learned from training pairs of entities linked by the predefined relation and applied to new entity-queries to find entities linked by the same relation. After describing the approach, we present experimental results on real-world web data collections, which show that the LRF approach always improves the precision of top-ranked search results to up to 8.6 times the baseline. Using LRF, WebRC also shows performances way above the baseline.
Resumo:
In this paper we illustrate a set of features of the Apromore process model repository for analyzing business process variants. Two types of analysis are provided: one is static and based on differences on the process control flow, the other is dynamic and based on differences in the process behavior between the variants. These features combine techniques for the management of large process model collections with those for mining process knowledge from process execution logs. The tool demonstration will be useful for researchers and practitioners working on large process model collections and process execution logs, and specifically for those with an interest in understanding, managing and consolidating business process variants both within and across organizational boundaries.
Resumo:
This paper focuses on the development and delivery of a core construction management (CM) unit, which forms the capstone of a four-unit CM stream in an undergraduate programme in the Faculty of Built Environment and Engineering at the Queensland University of Technology. UDB410 (Construction Management) is a final year unit that consolidates skills students have learned throughout their degree, hopefully graduating them as work-ready construction managers. It was developed in consultation with the Queensland Chapter of the Australian Institute of Building (AIB) and is a final year unit in the undergraduate Bachelor of Urban Development (CM) course. The unit uses various tools such as the OSIRIS business database (Bureau van Dijk Electronic Publishing, 2009), the AROUSAL (UK Version) construction business simulation (Lansley, 2009) and the Denison Organisational Culture Survey (Denison, 2000) to facilitate the development of skills in managing a construction company. The objectives of the paper are: • To track the rationale and development of the UDB410 unit sand describe the way in which this final year unit integrates learning from other parts of the course within which it is located as well as capping-off the CM stream of core units; • To highlight the difficulties of blending a balance of technology and management in a single unit; and • To explain how partnering with the construction industry benefited the learning quality of the unit.
Resumo:
Purpose - This paper seeks to examine the complex relationships between urban planning, infrastructure management, sustainable urban development, and to illustrate why there is an urgent need for local governments to develop a robust planning support system which integrates with advance urban computer modelling tools to facilitate better infrastructure management and improve knowledge sharing between the community, urban planners, engineers and decision makers. Design/methodology/approach - The methods used in this paper includes literature review and practical project case observations. Originality/value - This paper provides an insight of how the Brisbane's planning support system established by Brisbane City Council has significantly improved the effectiveness of urban planning, infrastructure management and community engagement through better knowledge management processes. Practical implications - This paper presents a practical framework for setting up a functional planning support system within local government. The integration of the Brisbane Urban Growth model, Virtual Brisbane and the Brisbane Economic Activity Monitoring (BEAM) database have proven initially successful to provide a dynamic platform to assist elected officials, planners and engineers to understand the limitations of the local environment, its urban systems and the planning implications on a city. With the Brisbane's planning support system, planners and decision makers are able to provide better planning outcomes, policy and infrastructure that adequately address the local needs and achieve sustainable spatial forms.