303 resultados para Unmanned Airborne Vehicles
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
A novel replaceable, modularized energy storage system with wireless interface is proposed for a battery operated electric vehicle (EV). The operation of the proposed system is explained and analyzed with an equivalent circuit and an averaged state-space model. A non-linear feedback linearization based controller is developed and implemented to regulate the DC link voltage by modulating the phase shift ratio. The working and control of the proposed system is verified through simulation and some preliminary results are presented.
Resumo:
Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.
Resumo:
Large scale solar plants are gaining recognition as potential energy sources for future. In this paper, the feasibility of using electric vehicles (EVs) to control a solar powered micro-grid is investigated in detail. The paper presents a PSCAD/EMTDC based model for the solar powered micro-grid with EVs. EVs are expected to have both the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) capability, through which energy can either be injected into or extracted from the solar powered micro-grid to control its energy imbalance. Using the model, the behaviour of the micro-grid is investigated under a given load profile, and the results indicate that a minimum number of EVs are required to meet the energy imbalance and it is time dependent and influenced by various factors such as depth of charge, commuting profiles, reliability etc...
Resumo:
Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.
Resumo:
Airborne particulate pollutant is considered to be one of the major harmful emissions produced by vehicle engines as it has been directly linked to serious health problems. Passengers spend long times at bus stations and may be exposed to high concentrations of pollution. Particle pollution at two bus stations in Brisbane, Australia were monitored. The two bus stations consisted of markedly different site geography and surroundings with one situated in a street canyon and the other elevated above ground level. The same flow of traffic operated through both stations. Real time measurements of ultrafine particle concentration, size distribution and meteorological conditions were carried out on the platform continuously over several days. The results showed that the particle number concentrations were significantly different at the two stations, suggesting that the layout of site geometry and surroundings was a dominant determining factor through the injection of fresh air into the station platforms and the rates of dilution.
Resumo:
This study investigates potential demand for infrastructure investment for alternative fuel vehicles by applying stated preference methods to a Japanese sample. The potential demand is estimated on the basis of how much people are willing to pay for alternative fuel vehicles under various refueling scenarios. Using the estimated parameters, the economic efficiency of establishing battery-exchange stations for electric vehicles is examined. The results indicate that infrastructural development of battery-exchange stations can be efficient when electric vehicle sales exceed 5.63% of all new vehicle sales. Further, we find a complementary relationship between the cruising ranges of alternative fuel vehicles and the infrastructure established.
Resumo:
A method for calculating visual odometry for ground vehicles with car-like kinematic motion constraints similar to Ackerman's steering model is presented. By taking advantage of this non-holonomic driving constraint we show a simple and practical solution to the odometry calculation by clever placement of a single camera. The method has been implemented successfully on a large industrial forklift and a Toyota Prado SUV. Results from our industrial test site is presented demonstrating the applicability of this method as a replacement for wheel encoder-based odometry for these vehicles.
Resumo:
This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
The growing number of potential applications of Unmanned Aircraft Systems (UAS) in civilian operations and national security is putting pressure of National Airworthiness Authorities to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends not only on developments in improved UAS reliability and safety, but also on regulations for certification, and methodologies for operational performance and safety assessment. This paper focuses on the latter and describes progress in relation to a previously proposed framework for evaluating robust autonomy of UAS. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It discusses how the data from the proposed evaluation can be used as an aid for decision making in certification and UAS designs. Finally, it discusses challenges associated with the evaluation.