314 resultados para Interior One Flange Load Case
Resumo:
The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].
Resumo:
Dragline Swing to Dump Automation By Peter Corke, CSIRO Manufacturing Technology/CRC for Mining Technology and Equipment (CMTE) Peter Corke presented a case study of a project to automate the dragline swing to dump operation. The project is funded by ACARP, BHP Coal, Pacific Coal and the CMTE and is being carried out on a dragline at Pacific Coal's Meandu mine near Brisbane. Corke began by highlighting that the minerals industry makes extensive use of large, mechanised machines. However, unlike other industries, mining has not adopted automation and most machines are controlled by human operators on board the machine itself. Choosing an automation target The dragline automation was chosen because: ò draglines are one of the biggest capital assets in a mine; ò performance between operators vary significantly, so improved capital utilisation is possible; ò the dragline is often the bottleneck in production; ò a large part of the operation cycle is spent swinging from dig to dump; and ò it is technically feasible. There has been a history of drag line automation projects, none with great success.
Resumo:
This paper presents an efficient noniterative method for distribution state estimation using conditional multivariate complex Gaussian distribution (CMCGD). In the proposed method, the mean and standard deviation (SD) of the state variables is obtained in one step considering load uncertainties, measurement errors, and load correlations. In this method, first the bus voltages, branch currents, and injection currents are represented by MCGD using direct load flow and a linear transformation. Then, the mean and SD of bus voltages, or other states, are calculated using CMCGD and estimation of variance method. The mean and SD of pseudo measurements, as well as spatial correlations between pseudo measurements, are modeled based on the historical data for different levels of load duration curve. The proposed method can handle load uncertainties without using time-consuming approaches such as Monte Carlo. Simulation results of two case studies, six-bus, and a realistic 747-bus distribution network show the effectiveness of the proposed method in terms of speed, accuracy, and quality against the conventional approach.
Resumo:
The relationship between corporate and sustainability performance continues to be controversial and unclear, not withstanding numerous theoretical and empirical studies. Despite this, views on corporate responsibilities “meet where management can show how voluntary social and environmental management contributes to the competitiveness and economic success of the company.” This approach is fundamental to the business case for infrastructure sustainability. It suggests that beyond-compliance activities undertaken by companies are commercially justified if they can be shown to contribute to profitability and shareholder value. Potential public good benefits range across a wide spectrum of economic (for example employment, local purchasing, reduced demand for electricity generation), social (indigenous employment and development, equity of access), and environmental (lower greenhouse gas emission, reduced use of non-renewable resources and potable water, less waste, enhanced biodiversity). Some of these benefits have impacts that lie in more than one of the economic, social, and environmental areas of public goods. Using a sustainability rating schemes and potential business benefits from sustainability initiatives, this paper presents a brief summary of an online survey of industry that identifies how rating scheme themes and business benefits relate. This allows for a case to be built demonstrating which sustainability themes offer particular business benefits.
Resumo:
Observing the working procedure of construction workers is an effective means of maintaining the safety performance of a construction project. It is also difficult to achieve due to a high worker-to-safety-officer ratio. There is an imminent need for the development of a tool to assist in the real-time monitoring of workers, in order to reduce the number of construction accidents. The development and application of a real time locating system (RTLS) based on the Chirp Spread Spectrum (CSS) technique is described in this paper for tracking the real-time position of workers on construction sites. Experiments and tests were carried out both on- and off-site to verify the accuracy of static and dynamic targets by the system, indicating an average error of within one metre. Experiments were also carried out to verify the ability of the system to identify workers’ unsafe behaviours. Wireless data transfer was used to simplify the deployment of the system. The system was deployed in a public residential construction project and proved to be quick and simple to use. The cost of the developed system is also reported to be reasonable (around 1800USD) in this study and is much cheaper than the cost of other RTLS. In addition, the CCS technique is shown to provide an economical solution with reasonable accuracy compared with other positioning systems, such as ultra wideband. The study verifies the potential of the CCS technique to provide an effective and economical aid in the improvement of safety management in the construction industry.
Resumo:
Higher education institutions across the world are experiencing a new generation of students, known as millennial learners. They are more technologically literate and digitally connected than previous generations of learners. To meet the teaching and learning needs of these learners, we must offer more deliberate and meaningful learning experiences and opportunities, where students can see the connections between new material and their own experiences and real world applications – an academagogic approach. This study compares the implementation of academagogy for two different groups of millennial learners – one a traditional face-to-face undergraduate Engineering unit, and the other a mixed-mode (online and face-to-face) undergraduate Design unit. The units are discussed in terms of their student evaluation results, both qualitative and quantitative, and in terms of their academic outcomes for students. Conclusions are drawn about the applicability of academagogy as a heuristic for improving teaching and learning across disciplines, as well as its strengths and limitations in terms of student results.
Resumo:
Background Internationally the stroke unit is recognised as the evidence-based model for patient management, although clarity about the effective components of stroke units is lacking. Whilst skilled nursing care has been proposed as one component, the theoretical and empirical basis for stroke nursing is limited. We attempted to explore the organisational context of stroke unit nursing, to determine those features that staff perceived to be important in facilitating high quality care. Design A case study approach was used, that included interviews with nurses and members of the multidisciplinary teams in two Canadian acute stroke units. A total of 20 interviews were completed, transcribed and analysed thematically using the Framework Approach. Trustworthiness was established through the review of themes and their interpretation by members of the stroke units. Findings Nine themes that comprised an organisational context that supported the delivery of high quality nursing care in acute stroke units were identified, and provide a framework for organisational development. The study highlighted the importance of an overarching service model to guide the organisation of care and the development of specialist and advanced nursing roles. Whilst multidisciplinary working appears to be a key component of stroke unit nursing, various organisational challenges to its successful implementation were highlighted. In particular the consequence of differences in the therapeutic approach of nurses and therapy staff needs to be explored in greater depth. Successful teamwork appears to depend on opportunities for the development of relationships between team members as much as the use of formal communication systems and structures. A co-ordinated approach to education and training, clinical leadership, a commitment to research, and opportunities for role and practice development also appear to be key organisational features of stroke unit nursing. Recommendations for the development of stroke nursing leadership and future research into teamwork in stroke settings are made.
Resumo:
In 2002, Phillip Di Bella’s childhood passion for coffee and keen entrepreneurial spirit led him to establish a small coffee roasting warehouse in in the inner suburbs of Brisbane (Di Bella, 2012). With a keen sense of direction and passion for his coffee products and providing unparalleled customer service, Di Bella Coffee quickly grew to become a key player in the coffee roasting scene. This passion for the ultimate coffee experience is evident in the firm’s logo ‘Di Bella Coffee Inspires Passion’. Phillip Di Bella stated that ‘the common denominator of this company is about inspiration and passion. We are not a coffee company, we are a people company. You know, are we inspiring you from the moment you walk in the door to the moment you leave. If you are not feeling inspired then we haven’t done our job properly as a company’. Fundamentally, providing the ultimate coffee experience, as detailed in the following case is one in which focuses on the coffee consumption experience, not the coffee itself. Over that last 10 years Di Bella Coffee has constantly strived for the ultimate coffee, while expanding business operations into the booming Asian coffee market, establishing headquarters in Shanghai in 2010. In 2011, Di Bella Coffee commenced their second international venture with the launch of operations in India (Di Bella Coffee, 2012); followed shortly by the creation of a new category of coffee, set to revolutionise to coffee industry. The fusion of two traditional forms of coffee; espresso coffee and instant coffee, to create a third category- espresso instant, led to the development of TORQ by Di Bella.
Resumo:
The CJNN is one of only two international nursing journals with a focus on neuroscience nursing. We at CJNN (the editorial staff and CANN board of directors) have had to make the difficult decision to reduce publication frequency from quarterly (four times per year) down to three editions per year. The reason behind this decision relates to the current lack of submitted articles for peer review and potential publication in the journal; it is difficult to put out a quality edition with only one or two new manuscripts. We would like to encourage Canadian neuroscience nurses to share their insights and expertise with colleagues by writing about challenges and achievements in patient care, experiences encountered on a daily basis, or about unique/interesting cases that may inform others in their practice.
Resumo:
There is increasing momentum within the construction industry to deploy distributed teams on projects, yet the major challenges that companies face for managing teams in distributed arrangements have yet to be explored in the construction context. Driven by such need, this study is intended to present an account of the major challenges encountered throughout the life cycle of offshore outsourcing arrangements within the South Australian construction industry. To this end, the study describes the observations made within the natural contexts of one construction project in terms of the challenges to the success of deploying distributed teams for outsourcing of works. Discussions remain in dialogue with relevant theories and the pertinent literature to explain the interpretations and lessons learned and to underpin the conclusions made. It is contended that this study contributes to the field by providing an illuminating insight into potential challenges facing distributed teams being implemented in outsourcing tasks in construction projects. Discussions also offer practical guidelines for construction project managers and assist them in dealing with potential challenges of offshore outsourcing through the lenses of distributed team working principles.
Resumo:
This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In many applications in the building industry LSBs are used with only one web side plate (WSP) at their supports. The WSPs are also often not full height plates. Past research studies showed that these real support connections did not provide the required simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence a detailed experimental study based on 25 shear tests was undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitably improved support connections were developed to improve the shear capacity of LSBs based on test results. Details of the recommended support connections and shear capacity results are given in this paper.
Resumo:
Light gauge Steel Frame (LSF) walls are extensively used in the building industry due to the many advantages they provide over other wall systems. Although LSF walls have been used widely, fire design of LSF walls is based on approximate prescriptive methods based on limited fire tests. Also these fire tests were conducted using the standard fire curve [1] and the applicability of available design rules to realistic design fire curves has not been verified. This paper investigates the accuracy of existing fire design rules in the current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [2] based on Eurocode 3 Part 1.3 [3] and AS/NZS 4600 [4] for standard fire exposure [1] were investigated in detail to determine their applicability to predict the axial compression strengths and fire resistance ratings of LSF walls exposed to realistic design fire curves. This paper also presents the fire performance results of LSF walls exposed to a range of realistic fire curves obtained using a finite element analysis based parametric study. The results from the parametric study were used to develop a simplified design method based on the critical hot flange temperature to predict the fire resistance ratings of LSF walls exposed to realistic fire curves. Finally, the stud failure times (fire resistance rating) obtained from the fire design rules and the simplified design method were compared with parametric study results for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic fire curves.
Resumo:
Structural fire safety has become one of the key considerations in the design and maintenance of the built infrastructure. Conventionally the fire resistance rating of load bearing Light gauge Steel Frame (LSF) walls is determined based on the standard time-temperature curve given in ISO 834. Recent research has shown that the true fire resistance of building elements exposed to building fires can be less than their fire resistance ratings determined based on standard fire tests. It is questionable whether the standard time-temperature curve truly represents the fuel loads in modern buildings. Therefore an equivalent fire severity approach has been used in the past to obtain fire resistance rating. This is based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of standard fire time-temperature curve. This paper presents the details of research undertaken to develop an energy based time equivalent approach to obtain the fire resistance ratings of LSF walls exposed to realistic design fire curves with respect to standard fire exposure. This approach relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance ratings of single and double layer plasterboard lined and externally insulated LSF walls. The predicted fire ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations exposed to both rapid and prolonged fires. The comparison shows that the proposed energy method can be used to obtain the fire resistance ratings of LSF walls in the case of prolonged fires.
Resumo:
Hollow flange channel section is a cold-formed high-strength and thin-walled steel section with a unique shape including two rectangular hollow flanges and a slender web. Due to its mono-symmetric characteristics, it will also be subjected to torsion when subjected to transverse loads in practical applications. Past research on steel beams subject to torsion has concentrated on open sections while very few steel design standards give suitable design rules for torsion design. Since the hollow flange channel section is different from conventional open sections, its torsional behaviour remains unknown to researchers. Therefore the elastic behaviour of hollow flange channel sections subject to uniform and non-uniform torsion, and combined torsion and bending was investigated using the solutions of appropriate differential equilibrium equations. The section torsion shear flow, warping normal stress distribution, and section constants including torsion constant and warping constant were obtained. The results were compared with those from finite element analyses that verified the accuracy of analytical solutions. Parametric studies were undertaken for simply supported beams subject to a uniformly distributed torque and a uniformly distributed transverse load applied away from the shear centre. This paper presents the details of this research into the elastic behaviour and strength of hollow flange channel sections subject to torsion and bending and the results.
Resumo:
The LiteSteel beam (LSB) is a cold-formed high strength steel channel section made of two torsionally rigid closed flanges and a slender web. Due to its mono-symmetric characteristics, its centroid and shear centre do not coincide. The LSBs can be used in floor systems as joists or bearers and in these applications they are often subjected to transverse loads that are applied away from the shear centre. Hence they are often subjected to combined bending and torsion actions. Previous researches on LSBs have concentrated on their bending or shear behaviour and strengths, and only limited research has been undertaken on their combined bending and torsion behaviour. Therefore in this research a series of nine experiments was first conducted on LSBs subject to combined bending and torsion. Three LSB sections were tested to failure under eccentric loading at mid-span, and appropriate results were obtained from seven tests. A special test rig was used to simulate two different eccentricities and to provide accurate simple boundary conditions at the supports. Finite element models of tested LSBs were developed using ANSYS, and the ultimate strengths, failure modes, and load–displacement curves were obtained and compared with corresponding test results. Finite element analyses agreed well with test results and hence the developed models were used in a parametric study to investigate the effects of load locations, eccentricities, and spans on the combined bending and torsion behaviour of LSBs. The interaction between the ultimate bending and torsional moment capacities was studied and a simple design rule was proposed. This paper presents the details of the tests, finite element analyses, and parametric study of LSBs subject to combined bending and torsion, and the results.