265 resultados para computer science education
Resumo:
Science activities that evoke positive emotional responses make a difference to students’ emotional experience of science. In this study, we explored 8th Grade students’ discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of each lesson were analysed to identify individual student's emotions. Results from two representative students are presented as case studies. Using a theoretical perspective drawn from theories of emotions founded in sociology, two assertions emerged. First, during the demonstration activity, students experienced the emotions of wonder and surprise; second, during a laboratory activity, students experienced the intense positive emotions of happiness/joy. Characteristics of these activities that contributed to students’ positive experiences are highlighted. The study found that choosing activities that evoked strong positive emotional experiences, focused students’ attention on the phenomenon they were learning, and the activities were recalled positively. Furthermore, such positive experiences may contribute to students’ interest and engagement in science and longer term memorability. Finally, implications for science teachers and pre-service teacher education are suggested.
Resumo:
A LATEX style file, named qutthesis.sty, is developed, for writing PhD or Research Masters thesis. Developed by Professor Glen Yu-Chu Tian, it tries to fulfill QUT’s Thesis requirements but it is unofficial.
Resumo:
Background Engineering design is of significant interest to engineering educators. As yet, how the higher education context shapes student outcomes in engineering design courses remains underexplored. Since design courses are the primary way students are taught the critical topic of design, it is important to understand how the institutional and organizational contexts shape student outcomes and how we could improve design projects, given the context. Purpose We sought to answer two questions: What aspects of the design education process are salient, or important, for students? How do these salient aspects affect their design practices? Design/Method We used a qualitative case study approach to address the research questions because of our emphasis on understanding process-related aspects of design work and developing an interpretive understanding from the students’ perspective. Results Using a nested structuration framework, we show that the context of design practices shaped students’ outcomes by constraining their approach to the project and by providing a framework for their design process. We provide recommendations for design educators to help students overcome impediments to achieving learning objectives for design activities. Our research questions the efficacy of teaching engineering design when a design problem lacks a context beyond the classroom. Conclusions The institutional and organizational contexts influence student design practices. Engineering educators should carefully consider the potential effects of the design projects they implement within a higher education context.
Resumo:
Assessing students’ conceptual understanding of technical content is important for instructors as well as students to learn content and apply knowledge in various contexts. Concept inventories that identify possible misconceptions through validated multiple-choice questions are helpful in identifying a misconception that may exist, but do not provide a meaningful assessment of why they exist or the nature of the students’ understanding. We conducted a case study with undergraduate students in an electrical engineering course by testing a validated multiple-choice response concept inventory that we augmented with a component for students to provide written explanations for their multiple-choice selection. Results revealed that correctly chosen multiple-choice selections did not always match correct conceptual understanding for question testing a specific concept. The addition of a text-response to multiple-choice concept inventory questions provided an enhanced and meaningful assessment of students’ conceptual understanding and highlighted variables associated with current concept inventories or multiple choice questions.
Resumo:
Introduction There are concerns about the science performance of Australian primary school students (Good rum, Hackling & Rennie, 2001), which requires a “major set of initiatives that focus on teacher beliefs and practices in the teaching and learning of science” (Sharpley, Tytler & Conley, 2000, p. 1). The science education community is calling for a “new approach” to science education in American schools, with an approach where a “mentor models, then coaches, then scaffolds, and then gradually fades scaffolding” (Barab & Hay, 2001, pp. 74, 90). The mentor, as modeller of practice, appears to be a key factor for enhancing science teaching, which may assist towards implementing science education reform
Resumo:
Perceptions of mentors' practices related to primary science teaching were obtained from final year preservice teachers after a 4-week practicum. Responses to a survey (n=59), constructed through literature-based practices and attributes of effective mentors, identified perceived strengths and weaknesses in the area of mentoring preservice teachers of primary science. Through exploratory factor analysis, this pilot study also tested the unidimensionality of mentoring practices and attributes assigned to categories (factors) that may characterise mentoring in primary science teaching. These suggested factors, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback had Cronbach alpha coefficients of internal consistency reliability of 0.93, 0.78, 0.94, 0.90, and 0.81 respectively. Survey responses indicated that mentors generally do not provide specific mentoring in primary science teaching. It is argued that science education reform requires the identification of factors and associated attributes and practices of mentoring primary science in order to effectively develop preservice teachers in primary science teaching.
Holistically approaching curriculum renewal: A case study of the Queensland University of Technology
Resumo:
There are still many programs in Australia and overseas where curricula comprise largely 20th Century-relevant graduate outcomes, framed in 20th Century learning and teaching approaches. A ‘Dynamic and Deliberative Model for Curriculum Renewal’ (DDMCR) model exists for undertaking such curriculum renewal that draws on the experiences of educators around the world, however there are few experiences to date in applying this model. At the Queensland University of Technology, the 2012 accreditation by Engineers Australia observed that, despite being exposed to relevant discipline-specific engineering curriculum and practice, students did not seem to be aware of the relevance of sustainable development to their degree, beyond first year exposure. In addressing this feedback, level 8 Australian Qualifications Framework, and drawing ideas from the DDMCR model, faculty senior management undertook a full review of the engineering curriculum.
Resumo:
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.
Resumo:
Mobile devices are very popular among tertiary student populations. This study looks at student use of hand-held mobile devices within the context of a first year programming unit. This research sought for ways in which an educational app on these devices could be successfully integrated into such a class's learning.
Resumo:
This paper describes the development and use of personas, a Human Computer Interaction (HCI) research methodology, within the STIMulate peer learning program, in order to better understand student behaviour patterns and motivations. STIMulate is a support for learning program at the Queensland University of Technology (QUT) in Brisbane, Australia. The program provides assistance in mathematics, science and information technology (IT) for course work students. A STIMulate space is provided for students to study and obtain one-on-one assistance from Peer Learning Facilitators (PLFs), who are experienced students that have excelled in relevant subject areas. This paper describes personas – archetypal users - that represent the motivations and behavioural patterns of students that utilise STIMulate (particularly the IT stream). The personas were developed based on interviews with PLFs, and subsequently validated by a PLF focus group. Seven different personas were developed. The personas enable us to better understand the characteristics of the students utilising the STIMulate program. The research provides a clearer picture of visiting student motivations and behavioural patterns. This has helped us identify gaps in the services provided, and be more aware of our assumptions about students. The personas have been deployed in PLF training programs, to help PLFs provide a better service to the students. The research findings suggest further study on the resonances between some students and PLFs, which we would like to better elicit.
Resumo:
STEM education faces an interesting conundrum. Western countries have implemented constructivist inspired student centred practices which are argued to be more engaging and relevant to student learning than the traditional, didactic approaches. However, student interest in pursuing careers in STEM have fallen or stagnated. In contrast, students in many developing countries in which teaching is still somewhat didactic and teacher centred are more disposed to STEM related careers than their western counterparts. Clearly, factors are at work which impact the way students value science and mathematics. This review draws on three components that act as determinants of science education in three different countries – Australia, India and Malaysia. We explore how national priorities and educational philosophy impacts educational practices as well as teacher beliefs and the need for suitable professional development. Socio-economic conditions for science education that are fundamental for developing countries in adopting constructivist educational models are analysed. It is identified that in order to reduce structural dissimilarities among countries that cause fragmentation of scientific knowledge, for Malaysia constructivist science education through English medium without losing the spirit of Malaysian culture and Malay language is essential while India need to adopt constructivist quality indicators in education. While adopting international English education, and reducing dominance of impact evaluation, India and Malaysia need to prevent losing their cultural and social capital vigour. Furthermore the paper argues that Australia might need to question the efficacy of current models that fail to engage students’ long term interest in STEM related careers. Australian and Malaysian science teachers must be capable of changing the personal biographies of learners for developing scientific conceptual information. In addition both Malaysia and Australia need to provide opportunities for access to different curricular programmes of knowledge based constructivist learning for different levels of learner competencies.
Resumo:
Companies such as NeuroSky and Emotiv Systems are selling non-medical EEG devices for human computer interaction. These devices are significantly more affordable than their medical counterparts, and are mainly used to measure levels of engagement, focus, relaxation and stress. This information is sought after for marketing research and games. However, these EEG devices have the potential to enable users to interact with their surrounding environment using thoughts only, without activating any muscles. In this paper, we present preliminary results that demonstrate that despite reduced voltage and time sensitivity compared to medical-grade EEG systems, the quality of the signals of the Emotiv EPOC neuroheadset is sufficiently good in allowing discrimina tion between imaging events. We collected streams of EEG raw data and trained different types of classifiers to discriminate between three states (rest and two imaging events). We achieved a generalisation error of less than 2% for two types of non-linear classifiers.
Resumo:
Bird species richness survey is one of the most intriguing ecological topics for evaluating environmental health. Here, bird species richness denotes the number of unique bird species in a particular area. Factors affecting the investigation of bird species richness include weather, observation bias, and most importantly, the prohibitive costs of conducting surveys at large spatiotemporal scales. Thanks to advances in recording techniques, these problems have been alleviated by deploying sensors for acoustic data collection. Although automated detection techniques have been introduced to identify various bird species, the innate complexity of bird vocalizations, the background noise present in the recording and the escalating volumes of acoustic data pose a challenging task on determination of bird species richness. In this paper we proposed a two-step computer-assisted sampling approach for determining bird species richness in one-day acoustic data. First, a classification model is built based on acoustic indices for filtering out minutes that contain few bird species. Then the classified bird minutes are ordered by an acoustic index and the redundant temporal minutes are removed from the ranked minute sequence. The experimental results show that our method is more efficient in directing experts for determination of bird species compared with the previous methods.
Resumo:
The explosive growth in the development of Traditional Chinese Medicine (TCM) has resulted in the continued increase in clinical and research data. The lack of standardised terminology, flaws in data quality planning and management of TCM informatics are preventing clinical decision-making, drug discovery and education. This paper argues that the introduction of data warehousing technologies to enhance the effectiveness and durability in TCM is paramount. To showcase the role of data warehousing in the improvement of TCM, this paper presents a practical model for data warehousing with detailed explanation, which is based on the structured electronic records, for TCM clinical researches and medical knowledge discovery.
Resumo:
This thesis investigated the use, design and evaluation of video games created for educational purposes. The outcomes from the research include analysis tools and design processes that can be used in the design and development of serious games, as well as games that can be used for training purposes. The contribution of this thesis is a greater understanding of how these types of video games lead to educational improvement, and how we can successfully frame game design and development processes to ensure such positive outcomes.