416 resultados para Lung-function
Resumo:
Purpose The role played by the innate immune system in determining survival from non-small-cell lung cancer (NSCLC) is unclear. The aim of this study was to investigate the prognostic significance of macrophage and mast-cell infiltration in NSCLC. Methods We used immunohistochemistry to identify tryptase+ mast cells and CD68+ macrophages in the tumor stroma and tumor islets in 175 patients with surgically resected NSCLC. Results Macrophages were detected in both the tumor stroma and islets in all patients. Mast cells were detected in the stroma and islets in 99.4% and 68.5% of patients, respectively. Using multivariate Cox proportional hazards analysis, increasing tumor islet macrophage density (P < .001) and tumor islet/stromal macrophage ratio (P < .001) emerged as favorable independent prognostic indicators. In contrast, increasing stromal macrophage density was an independent predictor of reduced survival (P = .001). The presence of tumor islet mast cells (P = .018) and increasing islet/stromal mast-cell ratio (P = .032) were also favorable independent prognostic indicators. Macrophage islet density showed the strongest effect: 5-year survival was 52.9% in patients with an islet macrophage density greater than the median versus 7.7% when less than the median (P < .0001). In the same groups, respectively, median survival was 2,244 versus 334 days (P < .0001). Patients with a high islet macrophage density but incomplete resection survived markedly longer than patients with a low islet macrophage density but complete resection. Conclusion The tumor islet CD68+ macrophage density is a powerful independent predictor of survival from surgically resected NSCLC. The biologic explanation for this and its implications for the use of adjunctive treatment requires further study. © 2005 by American Society of Clinical Oncology.
Resumo:
We found that procaspase 8 was overexpressed in non-small-cell lung cancers (NSCLCs) compared with matched normal tissues. The caspase 8 inhibitor FLICE-inhibitory protein (FLIP) was also overexpressed in the majority of NSCLCs. Silencing FLIP induced caspase 8 activation and apoptosis in NSCLC cell lines, but not in normal lung cell lines. Apoptosis induced by FLIP silencing was mediated by the TRAIL death receptors DR4 and DR5, but was not dependent on ligation of the receptors by TRAIL. Furthermore, the apoptosis induced by FLIP silencing was dependent on the overexpression of procaspase 8 in NSCLC cells. Moreover, in NSCLC cells, but not in normal cells, FLIP silencing induced co-localization of DR5 and ceramide, and disruption of this co-localization abrogated apoptosis. FLIP silencing supra-additively increased TRAIL-induced apoptosis of NSCLC cells; however, normal lung cells were resistant to TRAIL, even when FLIP was silenced. Importantly, FLIP silencing sensitized NSCLC cells but not normal cells to chemotherapy in vitro, and silencing FLIP in vivo retarded NSCLC xenograft growth and enhanced the anti-tumour effects of cisplatin. Collectively, our results suggest that due to frequent procaspase 8 overexpression, NSCLCs may be particularly sensitive to FLIP-targeted therapies.
Resumo:
DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.
Resumo:
The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.
Resumo:
Aim/Background: Transfusion-related acute lung injury (TRALI) is a potentially fatal adverse transfusion reaction. It is hypothesised to occur via a two-insult mechanism: the recipient’s underlying co-morbidity in addition to the transfusion of blood products activate neutrophils in the lung resulting in damaged endothelium and capillary leakage. Neutrophil activation may occur by antibody or non-antibody related mechanisms, with the length of storage of cellular blood products implicated in the latter. This study investigated non-antibody mediated priming and/or activation of neutrophil oxidative burst. Methods: A cytochrome C reduction assay was used to assess priming and activation of neutrophil oxidative burst by pooled supernatant (SN) from day 1 (D1; n=75) and day 42 (D42; n=113) packed red blood cells (PRBC). Pooled PRBC-SN were assessed in parallel with PAF (priming), fMLP (activating), PAF + fMLP (priming + activating) and buffer only (negative) controls. Cytochrome C reduction was measured over 30min at 37oC (inclusive of 10min priming). Neutrophil activation by PRBC-SN was assessed cf. buffer only and neutrophil priming by PRBC-SN was assessed by co-incubation with fMLP cf. fMLP alone. One-way ANOVA; Newman-Keuls post-test; p<0.05; n=10 independent assays. Results: Neither D1- nor D42- PRBC-SN alone activated neutrophil oxidative burst. In addition, D1-PRBC-SN did not prime fMLP-activated neutrophil oxidative burst. D42-PRBC-SN did, however, prime neutrophils for subsequent activation of oxidative burst by fMLP, the magnitude of response being similar to PAF (a known neutrophil priming agonist). Conclusion: These findings are consistent with the two-insult mechanism of TRALI. Factors released into the SN during PRBC storage contributed to neutrophil priming synergistically with other neutrophil stimulating agonists. This implicates PRBC storage duration as a key factor contributing to non-immune neutrophil activation in the development of TRALI in patients with pre-disposing inflammatory conditions.
Resumo:
Aim/Background
TRALI is hypothesised to develop via a two-event mechanism involving both the patieint's underlying morbidity and blood product factors. The storage of cellular products has been implicated in cases of non-antibody mediated TRALI, however the pathophysiological mechanisms are undefined. We investigated blood product storage-related modulation of inflmmatory cells and medicators involved in TRALI.
Methods
In an in vitro mode, fresh human whole blood was mixed with culture media (control) or LPS as a 1st event and "transfused" with 10% (v/v) pooled supernatant (SN) from Day 1 (d1, n=75) or Day 42 (D42, n=113) packed red blood cells (PRBCs) as a 2nd event. Following 6hrs, culture SN was used to assess the overall inflammatory response (cytometric bead array) and a duplicate assay containing protein transport inhibitor was used to assess neutrophil- and monocyte-specific inflmamatory responses using multi-colour flow cytometry. Panels: IL-6, IL-8, IL-10, IL-12, IL-1, TNF, MCP-1, IP-10, MIP-1. One-way ANOVA 95% CI.
Results
In the absence of LPS, exposure to D1 or D42 PRBC-SN reduced monocyte expression of IL-6, IL-8 and Il-10. D42 PRBC-SN also reduced monocyte IP-10, and the overall IL-8 production was increased. In the presence of LPS, D1-PRBC SN only modified overall IP-10 levels which were reduced. However, cf LPS alone, the combination of LPS and D42 PRBC-SN resulted in increased neutrophil and monocyte productionof IL-1 and IL-8 as well as reduced monocyte TNF production. Additionally, LPS and D42 PRBC-SN resulted in overall inflmmatory changes: elevated IL-8,
Resumo:
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Resumo:
Background The prognostic significance of vascular and lymphatic invasion in non-small-cell lung cancer is under continuous debate. We analyzed the effect of tumor aggressiveness (lymphatic and/or vessel invasion) on survival and relapse in stage I and II non-small-cell lung cancer. Methods We retrospectively analyzed prospectively collected data of 457 patients with stage I and II non-small-cell lung cancer from 1998 to 2008. Specimens were analyzed for intratumoral vascular invasion and lymphovascular space invasion. Overall survival and disease-free survival were estimated using the Kaplan-Meier method, and differences were determined by the logrank test. Cox regression analysis was performed to identify independent risk factors. Results: The incidence of intratumoral vascular invasion was 23.4%, and this correlated significantly with grade of differentiation, visceral pleural involvement, lymphovascular space invasion, and N status. The incidence of lymphovascular space invasion was 5.5%, and this correlated significantly with grade of differentiation, lymph nodes involved, and intratumoral vascular invasion. On multivariate analyses, intratumoral vascular invasion proved to be an significant independent risk factor for overall survival but not for disease-free survival. Lymphovascular space invasion was associated significantly with early tumor recurrence but not with overall survival. Conclusions: Vascular and lymphatic invasion can serve as independent prognostic factors in completely resected nonsmall- cell lung cancer. Intratumoral vascular invasion and lymphovascular space invasion in early stage non-small-cell lung cancer are important factors in overall survival and early tumor recurrence. Further large scale studies with more recent patient cohorts and refined histological techniques are warranted.
Resumo:
The Interleukin-23 (IL-23)/IL-23R signaling axis is an important inflammatory pathway, involved in the stimulation and regulation of the T helper (Th) 17 lymphocytes, resulting in the production of IL-17. Aside from auto-immunity, this cytokine has also been linked to carcinogenesis and polymorphisms in the IL-23R gene are associated with an increased risk for the development of a number of different cancers. Activation of the IL-23 pathway results in the up-regulation of STAT3 and it is thought that the pathological consequences associated with this are in part due to the production of IL-17. We have previously identified IL-23A as pro-proliferative and epigenetically regulated in non-small cell lung cancer (NSCLC). The current study aims to evaluate IL-23R in greater detail in NSCLC. We demonstrate that IL-23R is expressed and epigenetically regulated in NSCLC through histone post-translation modifications and CpG island methylation. In addition, Gemcitabine treatment, a chemotherapy drug used in the treatment of NSCLC, resulted in the up-regulation of the IL-23R. Furthermore, Apilimod (STA 5326), a small molecule which blocks the expression of IL-23 and IL-12, reduced the proliferative capacity of NSCLC cells, particularly in the adenocarcinoma (A549) sub-type. Apilimod is currently undergoing investigation in a number of clinical trials for the treatment of auto-immune conditions such as Crohn's disease and Rheumatoid Arthritis. Our results may have implications for treating NSCLC patients with Gemcitabine or epigenetic targeted therapies. However, Apilimod may possibly provide a new treatment avenue for NSCLC patients. Work is currently ongoing to further delineate the IL-23/IL-23R axis in this disease.
Resumo:
It was Dvorak in 1986 that postulated 'tumours are wounds that do not heal' as they share common cellular and molecular mechanisms, which are active in both wounds and in cancer tissue. Inflammation is a crucial part of the innate immune system that protects against pathogens and initiates adaptive immunity. Acute inflammation is usually a rapid and self-limiting process, however it does not always resolve. This leads to the establishment of a chronic inflammatory state and provides the perfect environment for carcinogenesis. Inflammation and cancer have long had an association, going back as far as Virchow in 1863, when leucocytes were noted in neoplastic tissue. It has been estimated that approximately 25% of all malignancies are initiated or exacerbated by inflammation caused by infectious agents. Furthermore, inflammation is linked to all of the six hallmarks of cancer (evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis, increase in survival factors and invasion and metastasis). It is thought that inflammation may play a critical role in lung carcinogenesis given that individuals with inflammatory lung conditions have an increased risk of lung cancer development. Cigarette smoking can also induce inflammation in the lung and smokers are at a higher risk of developing lung cancer than non-smokers. However, exposure to a number of environmental agents such as radon, have also been demonstrated as a causative factor in this disease. This chapter will focus on inflammation as a contributory factor in non small cell lung cancer (NSCLC), concentrating primarily on the pathological involvement of the pro-inflammatory cytokines, TNF-α, IL-1β, and the CXC (ELR+) chemokine family. Targeting of inflammatory mediators will also be discussed as a therapeutic strategy in this disease. © 2013 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.
Resumo:
Background Thromboxane synthase (TXS) metabolizes prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with angiogenesis and poor outcome. TXS has been identified as a potential therapeutic target in NSCLC. This study examines a link between TXS expression, angiogenesis, and survival in NSCLC. Methods TXS and VEGF metabolite levels were measured in NSCLC serum samples (n=46) by EIA. TXB2 levels were correlated with VEGF. A 204-patient TMA was stained for TXS, VEGF, and CD-31 expression. Expression was correlated with a range of clinical parameters, including overall survival. TXS expression was correlated with VEGF and CD-31. Stable TXS clones were generated and the effect of overexpression on tumor growth and angiogenesis markers was examined in-vitro and in-vivo (xenograft mouse model). Results Serum TXB2 levels were correlated with VEGF (p<0.05). TXS and VEGF were expressed to a varying degree in NSCLC tissue. TXS was associated with VEGF (p<0.0001) and microvessel density (CD-31; p<0.05). TXS and VEGF expression levels were higher in adenocarcinoma (p<0.0001) and female patients (p<0.05). Stable overexpression of TXS increased VEGF secretion in-vitro. While no significant association with patient survival was observed for either TXS or VEGF in our patient cohort, TXS overexpression significantly (p<0.05) increased tumor growth in-vivo. TXS overexpression was also associated with higher levels of VEGF, microvessel density, and reduced apoptosis in xenograft tumors. Conclusion TXS promotes tumor growth in-vivo in NSCLC, an effect which is at least partly mediated through increased tumor angiogenesis.
Resumo:
Background Recent experimental and biomarker evidence indicates that the epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor 1 (IGF1R) interact in the pathogenesis of malignant epithelial tumors, including lung cancer. This study examines the expression of both receptors and their prognostic significance in surgically resected non-small-cell lung cancer (NSCLC). Methods EGFR and IGF1R expression were evaluated in 184 patients with NSCLC (83 squamous cell carcinomas [SCCs], 83 adenocarcinomas [ADCs], and 18 other types) using immunohistochemical (IHC) analysis. Expression of both receptors was examined in matched fresh frozen normal and tumor tissues from 40 patients with NSCLC (20 SCCs and 20 ADCs) by Western blot analysis. Results High EGFR expression was detected in 51% of patients, and SCCs had higher EGFR expression than did non-SCCs (57.4% vs. 42.5%; P =.028). High IGF1R expression was observed in 53.8% of patients, with SCC having higher expression than non-SCC (62.6% vs. 37.3%; P =.0004). A significant association was shown between EGFR and IGF1R protein overexpression (P <.005). Patients with high expression of both receptors had a poorer overall survival (OS) (P =.04). Higher EGFR and IGF1R expression was detected in resected tumors relative to matched normal tissues (P =.0004 and P =.0009), with SCC having higher expression levels than ADC. Conclusion Our findings indicate a close interrelationship between EGFR and IGF1R. Coexpression of both receptors correlates with poor survival. This subset of patients may benefit from treatments cotargeting EGFR and IGF1R. © 2014 Elsevier Inc. All rights reserved.
Resumo:
The majority of non-small cell lung cancer (NSCLC) patients present with advanced disease and with a 5 year survival rate of <15% for these patients, treatment outcomes are considered extremely disappointing. Standard chemotherapy regimens provide some improvement to ~40% of patients. However, intrinsic and acquired chemoresistance are a significant problem and hinder sustained long term benefits of such treatments. Advances in proteomic and genomic profiling have increased our understanding of the aberrant molecular mechanisms that are driving an individual's tumour. The increased sensitivity of these technologies has enabled molecular profiling at the stage of initial biopsy thus paving the way for a more personalised approach to the treatment of cancer patients. Improvements in diagnostics together with a wave of new targeted small molecule inhibitors and monoclonal antibodies have revolutionised the treatment of cancer. To date there are essentially three targeted agents approved for clinical use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets the epidermal growth factor receptor (EGFR) TK domain, has proven to be an effective treatment strategy in patients who harbour activating mutations in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) can improve survival, response rates, and progression-free survival when used in combination with chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase activity of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased tumour cell growth, migration, and invasiveness in patients with locally advanced or metastatic NSCLC. The clinical relevance of several other targeted agents are under investigation in distinct molecular subsets of patients with key "driver" mutations including: KRAS, HER2, BRAF, MET, PIK3CA, AKT1,MAP2K1, ROS1 and RET. Often several pathways are activated simultaneously and crosstalk between pathways allows tumour cells to escape the inhibition of a single targeted agent. This chapter will explore the clinical development of currently available targeted therapies for NSCLC as well as those in clinical trials and will examine the synergy between cytotoxic therapies.
Resumo:
Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism.