284 resultados para Interface de programas aplicativos (Software)
Resumo:
The growing knowledge of the genetic polymorphisms of enzymes metabolising xenobiotics in humans and their connections with individual susceptibility towards toxicants has created new and important interfaces between human epidemiology and experimental toxicology. The results of molecular epidemiological studies may provide new hypotheses and concepts, which call for experimental verification, and experimental concepts may obtain further proof by molecular epidemiological studies. If applied diligently, these possibilities may be combined to lead to new strategies of human-oriented toxicological research. This overview will present some outstanding examples for such strategies taken from the practically very important field of occupational toxicology. The main focus is placed on the effects of enzyme polymorphisms of the xenobiotic metabolism in association with the induction of bladder cancer and renal cell cancer after exposure to occupational chemicals. Also, smoking and induction of head and neck squamous cell cancer are considered.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.
Resumo:
The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs--Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs--Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.
Resumo:
Energy usage in general, and electricity usage in particular, are major concerns internationally due to the increased cost of providing energy supplies and the environmental impacts of electricity generation using carbon-based fuels. If a "systems" approach is taken to understanding energy issues then both supply and demand need to be considered holistically. This paper examines two research projects in the energy area with IT tools as key deliverables, one examining supply issues and the other studying demand side issues. The supply side project used hard engineering methods to build the models and software, while the demand side project used a social science approach. While the projects are distinct, there was an overlap in personnel. Comparing the knowledge extraction, model building, implementation and interface issues of these two deliverables identifies both interesting contrasts and commonalities.
Resumo:
Software as a Service (SaaS) can provide significant benefits to small and medium enterprises (SMEs) due to advantages like ease of access, 7*24 availability, and utility pricing. However, underlying the SaaS delivery model is often the assumption that SMEs will directly interact with the SaaS vendor and use a self-service approach. In practice, we see the rise of SaaS intermediaries who can support SMEs with sourcing and leveraging SaaS. This paper reports on the roles of intermediaries and how they support SMEs with using SaaS. We conducted an empirical study of two SaaS intermediaries and analysed their business models, in particular their value propositions. We identified orientation (technology or customer) and alignment (operational or strategic) as themes for understanding their roles. The contributions of this paper include: (1) the identification and description of SaaS intermediaries for SMEs based on an empirical study and (2) understanding the different roles of SaaS intermediaries, in particular a more basic role based on technology orientation and operational alignment and a more value adding role based on customer orientation and strategic alignment. We propose that SaaS intermediaries can address SaaS adoption and implementation challenges of SMEs by playing a basic role and can also aim to support SMEs in creating business value with SaaS based solutions by playing an added value role.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
Critical to the research of urban morphologists is the availability of historical records that document the urban transformation of the study area. However, thus far little work has been done towards an empirical approach to the validation of archival data in this field. Outlined in this paper, therefore, is a new methodology for validating the accuracy of archival records and mapping data, accrued through the process of urban morphological research, so as to establish a reliable platform from which analysis can proceed. The paper particularly addresses the problems of inaccuracies in existing curated historical information, as well as errors in archival research by student assistants, which together give rise to unacceptable levels of uncertainty in the documentation. The paper discusses the problems relating to the reliability of historical information, demonstrates the importance of data verification in urban morphological research, and proposes a rigorous method for objective testing of collected archival data through the use of qualitative data analysis software.
Resumo:
This study started with the aim to develop an approach that will help designers create interfaces that are more intuitive for older adults to use. Two objectives were set for this study: 1) to investigate one of the possible strategies for developing intuitive interfaces for older people, and; 2) to investigate factors that could interfere with intuitive use. This paper briefly presents the outcome of the two experiments and how it has lead to the development of an adaptable interface design model that will help designers develop interfaces that are intuitive to learn and, over time, intuitive to use for users with diverse technology prior experience and cognitive abilities.
Resumo:
This study responds to calls for research on work-family aspects in entrepreneurship research. Our study examined the role of work-family conflict and enhancement on small business owners’ (SBOs) wellbeing. We found work-family has negative direct effect on mental health, job and family satisfactions. Furthermore, we found that under high level of work-family conflict condition, SBOs who perceive a greater level of work-family enhancement would feel more satisfy with their life, job as well as family aspects. Interestingly, under high level of conflict, even SBOs perceive greater level of enhancement, it would not lessen the negative impact of the conflict on their mental health. These results suggest that once psychological health is harmed by work-family conflict, its negative consequences remain unchanged.
Resumo:
This chapter analyses the copyright law framework needed to ensure open access to outputs of the Australian academic and research sector such as journal articles and theses. It overviews the new knowledge landscape, the principles of copyright law, the concept of open access to knowledge, the recently developed open content models of copyright licensing and the challenges faced in providing greater access to knowledge and research outputs.
Resumo:
The characterisation of facial expression through landmark-based analysis methods such as FACEM (Pilowsky & Katsikitis, 1994) has a variety of uses in psychiatric and psychological research. In these systems, important structural relationships are extracted from images of facial expressions by the analysis of a pre-defined set of feature points. These relationship measures may then be used, for instance, to assess the degree of variability and similarity between different facial expressions of emotion. FaceXpress is a multimedia software suite that provides a generalised workbench for landmark-based facial emotion analysis and stimulus manipulation. It is a flexible tool that is designed to be specialised at runtime by the user. While FaceXpress has been used to implement the FACEM process, it can also be configured to support any other similar, arbitrary system for quantifying human facial emotion. FaceXpress also implements an integrated set of image processing tools and specialised tools for facial expression stimulus production including facial morphing routines and the generation of expression-representative line drawings from photographs.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
Resumo:
The detailed system design of a small experimental autonomous helicopter is described. The system requires no ground-to-helicopter communications and hence all automation hardware is on-board the helicopter. All elements of the system are described including the control computer, the flight computer (the helicopter-to-control-computer interface), the sensors and the software. A number of critical implementation issues are also discussed.
Resumo:
This paper describes a software architecture for real-world robotic applications. We discuss issues of software reliability, testing and realistic off-line simulation that allows the majority of the automation system to be tested off-line in the laboratory before deployment in the field. A recent project, the automation of a very large mining machine is used to illustrate the discussion.