264 resultados para Evolutionary algorithm (EA)
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
Extracting frequent subtrees from the tree structured data has important applications in Web mining. In this paper, we introduce a novel canonical form for rooted labelled unordered trees called the balanced-optimal-search canonical form (BOCF) that can handle the isomorphism problem efficiently. Using BOCF, we define a tree structure guided scheme based enumeration approach that systematically enumerates only the valid subtrees. Finally, we present the balanced optimal search tree miner (BOSTER) algorithm based on BOCF and the proposed enumeration approach, for finding frequent induced subtrees from a database of labelled rooted unordered trees. Experiments on the real datasets compare the efficiency of BOSTER over the two state-of-the-art algorithms for mining induced unordered subtrees, HybridTreeMiner and UNI3. The results are encouraging.
Resumo:
This paper presents an algorithm for mining unordered embedded subtrees using the balanced-optimal-search canonical form (BOCF). A tree structure guided scheme based enumeration approach is defined using BOCF for systematically enumerating the valid subtrees only. Based on this canonical form and enumeration technique, the balanced optimal search embedded subtree mining algorithm (BEST) is introduced for mining embedded subtrees from a database of labelled rooted unordered trees. The extensive experiments on both synthetic and real datasets demonstrate the efficiency of BEST over the two state-of-the-art algorithms for mining embedded unordered subtrees, SLEUTH and U3.
Resumo:
Many insect clades, especially within the Diptera (true flies), have been considered classically ‘Gondwanan’, with an inference that distributions derive from vicariance of the southern continents. Assessing the role that vicariance has played in the evolution of austral taxa requires testing the location and tempo of diversification and speciation against the well-established predictions of fragmentation of the ancient super-continent. Several early (anecdotal) hypotheses that current austral distributions originate from the breakup of Gondwana derive from studies of taxa within the family Chironomidae (non-biting midges). With the advent of molecular phylogenetics and biogeographic analytical software, these studies have been revisited and expanded to test such conclusions better. Here we studied the midge genus Stictocladius Edwards, from the subfamily Orthocladiinae, which contains austral-distributed clades that match vicariance-based expectations. We resolve several issues of systematic relationships among morphological species and reveal cryptic diversity within many taxa. Time-calibrated phylogenetic relationships among taxa accorded partially with the predicted tempo from geology. For these apparently vagile insects, vicariance-dated patterns persist for South America and Australia. However, as often found, divergence time estimates for New Zealand at c. 50 mya post-date separation of Zealandia from Antarctica and the remainder of Gondwana, but predate the proposed Oligocene ‘drowning’ of these islands. We detail other such ‘anomalous’ dates and suggest a single common explanation rather than stochastic processes. This could involve synchronous establishment following recovery from ‘drowning’ and/or deleteriously warming associated with the mid-Eocene climatic optimum (hence ‘waving’, which refers to cycles of drowning events) plus new availability of topography providing of cool running waters, or all these factors in combination. Alternatively a vicariance explanation remains available, given the uncertain duration of connectivity of Zealandia to Australia–Antarctic–South America via the Lord Howe and Norfolk ridges into the Eocene.
Resumo:
A multi-objective design optimization study has been conducted for upstream fuel injection through porous media applied to the first ramp of a two-dimensional scramjet intake. The optimization has been performed by coupling evolutionary algorithms assisted by surrogate modeling and computational fluid dynamics with respect to three design criteria, that is, the maximization of the absolute mixing quantity, total pressure saving, and fuel penetration. A distinct Pareto optimal front has been obtained, highlighting the counteracting behavior of the total pressure against the mixing efficiency and fuel penetration. The injector location and size have been identified as the key design parameters as a result of a sensitivity analysis, with negligible influence of the porous properties in the configurations and conditions considered in the present study. Flowfield visualization has revealed the underlying physics associated with the effects of these dominant parameters on the shock structure and intensity.
Resumo:
We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set.We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.
Resumo:
Energy efficient embedded computing enables new application scenarios in mobile devices like software-defined radio and video processing. The hierarchical multiprocessor considered in this work may contain dozens or hundreds of resource efficient VLIW CPUs. Programming this number of CPU cores is a complex task requiring compiler support. The stream programming paradigm provides beneficial properties that help to support automatic partitioning. This work describes a compiler for streaming applications targeting the self-build hierarchical CoreVA-MPSoC multiprocessor platform. The compiler is supported by a programming model that is tailored to fit the streaming programming paradigm. We present a novel simulated-annealing (SA) based partitioning algorithm, called Smart SA. The overall speedup of Smart SA is 12.84 for an MPSoC with 16 CPU cores compared to a single CPU implementation. Comparison with a state of the art partitioning algorithm shows an average performance improvement of 34.07%.
Resumo:
Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.
Resumo:
There is an increased interest on the use of UAVs for environmental research and to track bush fire plumes, volcanic plumes or pollutant sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A memory based and gradient based approach, were developed and compared. A method for generating sparse plumes was also developed. Results indicate the ability of the algorithms to track plumes in 2D and 3D.
Resumo:
China has experienced considerable economic growth since 1978, which was accompanied by unprecedented growth in urbanization and, more recently, by associated rising urban housing and land banking issues. One such issue is that of land hoarding - where real estate developers purchase land to hold unused in the rising market for a future lucrative sale, often several years later. This practice is outlawed in China, where land use is controlled by increasingly strengthened Government policies and inspectors. Despite this, land hoarding continues apace, with the main culprits being the developers and inspectors working subversively. This resembles a game between two players - the inspector and the developer - which provides the setting for this paper in developing an evolutionary game theory model to provide insights into dealing with the dilemmas faced by the players. The logic and dilemma of land banking strategy and illegal land banking issues are analysed, along with the land inspector’s role from a game theory perspective by determining the replication dynamic mechanism and evolutionary stable strategies under the various conditions that the players face. The major factors influencing the actions of land inspectors, on the other hand, are the costs of inspection, no matter if it is strict or indolent, conflict costs, and income and penalties from corruption. From this, it is shown that, when the net loss for corruption (income from corruption minus the penalties for corruption and cost of strict inspections) is less than the cost of strict inspections, the final evolutionary stable strategy of the inspectors is to carry out indolent inspections. Then, whether penalising developers for hoarding is severe or not, the evolutionary strategy for the developer is to hoard. The implications for land use control mechanisms and associated developer-inspector actions and counteractions are then examined in the light of the model's properties.
Resumo:
This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.
Resumo:
The "Humies" awards are an annual competition held in conjunction with the Genetic and Evolutionary Computation Conference (GECCO), in which cash prizes totalling $10,000 are awarded to the most human-competitive results produced by any form of evolutionary computation published in the previous year. This article describes the gold medal-winning entry from the 2012 "Humies" competition, based on the LUDI system for playing, evaluating and creating new board games. LUDI was able to demonstrate human-competitive results in evolving novel board games that have gone on to be commercially published, one of which, Yavalath, has been ranked in the top 2.5% of abstract board games ever invented. Further evidence of human-competitiveness was demonstrated in the evolved games implicitly capturing several principles of good game design, outperforming human designers in at least one case, and going on to inspire a new sub-genre of games.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.