270 resultados para Cosmological constant
Resumo:
The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.
Resumo:
Technical: This looped video work is made up from a number of still images animated in a sequence, not intended to be a smooth action, but syncopated. The gaps in real time suggest blinking, lapses in technology, warps in time and distance. The still images have been manipulated in photoshop and imported into an animation software program, showing subtle emphasis on various aspects of the features of the face and location from the screen shots. Content: Obsession is one of the most constant expressions of love, whether it is a negative attribute, such as stalking, or the need to see or stroke the beloved, or telling and re-telling the story of first meeting. “like the beat, beat, beat of the tom tom when the jungle shadows fall like the tick, tick, tock of the stately clock as it stands against the wall like the drip, drip drip of the rain drops when the summer shower’s through a voice within me keeps repeating you, you, you… only you...” (Cole Porter, Night and Day) My desire to immerse myself in my newly-met adult daughter as a reality is as obsessive as any new parent. The primary means of contact is video cam, which has become a kind of surveillance for me. I stare at her mouth as it moves, her ear as she moves her head, her smile, her grimaces, her high cheekbones, her eyes that are like mine, the shape of her head, her teeth that are like her father’s… hundreds of candid pictures screen shot over a year and a half were the source of the video images.
Resumo:
Background Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs). Methods Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis. Findings Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa. Interpretation Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world. Funding Bill & Melinda Gates Foundation.
Resumo:
Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.
Resumo:
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.
Resumo:
Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.
Resumo:
Modern mobile computing devices are versatile, but bring the burden of constant settings adjustment according to the current conditions of the environment. While until today, this task has to be accomplished by the human user, the variety of sensors usually deployed in such a handset provides enough data for autonomous self-configuration by a learning, adaptive system. However, this data is not fully available at certain points in time, or can contain false values. Handling potentially incomplete sensor data to detect context changes without a semantic layer represents a scientific challenge which we address with our approach. A novel machine learning technique is presented - the Missing-Values-SOM - which solves this problem by predicting setting adjustments based on context information. Our method is centered around a self-organizing map, extending it to provide a means of handling missing values. We demonstrate the performance of our approach on mobile context snapshots, as well as on classical machine learning datasets.
Resumo:
Background: Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods: Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results: EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion: EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
Purpose: Photoreceptor interactions reduce the temporal bandwidth of the visual system under mesopic illumination. The dynamics of these interactions are not clear. This study investigated cone-cone and rod-cone interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to vision via shared post-receptoral pathways. Methods: A four-primary photostimulator independently controlled photoreceptor activity in human observers. To determine the temporal dynamics of receptoral (L, S, R) and post-receptoral (LMS, LMSR, +L-M) pathways (5 Td, 7° eccentricity) in Experiment 1, ON-pathway sensitivity was assayed with an incremental probe (25ms) presented relative to onset of an incremental sawtooth conditioning pulse (1000ms). To define the post-receptoral pathways mediating the rod stimulus, Experiment 2 matched the color appearance of increased rod activation (30% contrast, 25-1000ms; constant cone excitation) with cone stimuli (variable L+M, L/L+M, S/L+M; constant rod excitation). Results: Cone-cone interactions with luminance stimuli (LMS, LMSR, L-cone) reduced Weber contrast sensitivity by 13% and the time course of adaptation was 23.7±1ms (μ±SE). With chromatic stimuli (+L-M, S), cone pathway sensitivity was also reduced and recovery was slower (+L-M 8%, 2.9±0.1ms; S 38%, 1.5±0.3ms). Threshold patterns at ON-conditioning pulse onset were monophasic for luminance and biphasic for chromatic stimuli. Rod-rod interactions increased sensitivity(19%) with a recovery time of 0.7±0.2ms. Compared to cone-cone interactions, rod-cone interactions with luminance stimuli reduced sensitivity to a lesser degree (5%) with faster recovery (42.9±0.7ms). Rod-cone interactions were absent with chromatic stimuli. Experiment 2 showed that rod activation generated luminance (L+M) signals at all durations, and chromatic signals (L/L+M, S/L+M) for durations >75ms. Conclusions: Temporal dynamics of cone-cone interactions are consistent with contrast sensitivity loss in the MC pathway for luminance stimuli and chromatically opponent responses in the PC and KC pathway with chromatic stimuli. Rod-cone interactions limit contrast sensitivity loss during dynamic illumination changes and increase the speed of mesopic light adaptation. The change in relative weighting of the temporal rod signal within the major post-receptoral pathways modifies the sensitivity and dynamics of photoreceptor interactions.
Resumo:
We consider the problem of how to maximize secure connectivity of multi-hop wireless ad hoc networks after deployment. Two approaches, based on graph augmentation problems with nonlinear edge costs, are formulated. The first one is based on establishing a secret key using only the links that are already secured by secret keys. This problem is in NP-hard and does not accept polynomial time approximation scheme PTAS since minimum cutsets to be augmented do not admit constant costs. The second one is based of increasing the power level between a pair of nodes that has a secret key to enable them physically connect. This problem can be formulated as the optimal key establishment problem with interference constraints with bi-objectives: (i) maximizing the concurrent key establishment flow, (ii) minimizing the cost. We show that both problems are NP-hard and MAX-SNP (i.e., it is NP-hard to approximate them within a factor of 1 + e for e > 0 ) with a reduction to MAX3SAT problem. Thus, we design and implement a fully distributed algorithm for authenticated key establishment in wireless sensor networks where each sensor knows only its one- hop neighborhood. Our witness based approaches find witnesses in multi-hop neighborhood to authenticate the key establishment between two sensor nodes which do not share a key and which are not connected through a secure path.
Resumo:
A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.
Resumo:
The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δ(r), characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δ(r) and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δ(r). This correlation of δ(r) with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δ(r) values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints.
Resumo:
In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.
Resumo:
Australia has many isolated communities that require human services provided by qualified professionals. Maintaining a viable and equitable spread of such educational capital across space as a public good is a challenge. Reports investigating this problem repeatedly point to ‘family issues’ such as limited options for children’s education, and limited access to ongoing professional development, as deterrents for rural/remote employment despite lucrative incentive schemes. This paper draws on semi-structured interviews with 30 parents of school-aged children, who work as doctors, nurses, teachers and police in six rural/remote towns in Queensland. We asked them how their family units reconcile career opportunities with educational strategy for family members over time and space. This paper considers these issues as a sociology of education problem in a context of educational marketisation and spiralling credentialism. This paper offers the concept of ‘mobius markets’ to capture the cyclical and intergenerational process underway in middle class professional families of investing in educational capitals, maintaining or maximising their value and profiting from them. A mobius strip is the topological anomaly of a single loop with one twist in it, whereby the loop becomes one continuous surface, not the double-sided shape it appears to be. This project is interested in how the middle class professional family is similarly on a constant circuit, investing in educational capitals, upgrading their currency/value, and profiting from them. This elaborated sense of educational markets extends the more usual sociological focus on school choice.