313 resultados para pulsed plasma polymerization
Resumo:
A complex multi-scale model and numerical simulations are used to demonstrate, by simulating the development of patterns of nanotips, nanowalls, nanoislands and nanovoids of a characteristic size of 5-100 nm, a greater degree of determinism in the formation of various nanostructures by using the low-density, low-temperature plasma-based processes. It is shown that in the plasma, in contrast to the neutral gas-based processes, one can synthesize nanostructures of various dimensionalities and shapes with a larger surface density, desired geometrical parameters and narrower size distribution functions. This effect is mainly attributed to strong ion focusing by irregular electric fields in the nanopatterns, which effectively redistributes the influxes of plasma-generated building units and thus provides a selective control of their delivery to the growing nanostructures.
Resumo:
The formation of Ge quantum dot arrays by deposition from a low-temperature plasma environment is investigated by kinetic Monte Carlo numerical simulation. It is demonstrated that balancing of the Ge influx from the plasma against surface diffusion provides an effective control of the surface processes and can result in the formation of very small densely packed quantum dots. In the supply-controlled mode, a continuous layer is formed which is then followed by the usual Stranski-Krastanow fragmentation with a nanocluster size of 10 nm. In the diffusion-controlled mode, with the oversupply relative to the surface diffusion rate, nanoclusters with a characteristic size of 3 nm are formed. Higher temperatures change the mode to supply controlled and thus encourage formation of the continuous layer that then fragments into an array of large size. The use of a high rate of deposition, easily accessible using plasma techniques, changes the mode to diffusion controlled and thus encourages formation of a dense array of small nanoislands.
Resumo:
Plasma-assisted reactive rf magnetron sputtering deposition is used to fabricate vanadium oxide films on glass, silica and silicon substrates. The process conditions are optimized to synthesize phase-pure vanadium pentoxide (V2O5) featuring a nanocrystalline structure with the predominant (0 0 1) crystallographic orientation, surface morphology with rod-like nanosized grains and very uniform (the non-uniformity does not exceed 4%) coating thickness over large surface areas. The V2O5 films also show excellent and temperature-independent optical transmittance in a broad temperature range (20-95 °C). The results are relevant to the development of smart functional coatings with temperature-tunable properties. © 2007 IOP Publishing Ltd.
Resumo:
Plasma-aided nanofabrication is a rapidly expanding area of research spanning disciplines ranging from physics and chemistry of plasmas and gas discharges to solid state physics, materials science, surface science, nanoscience and nanotechnology and related engineering subjects. The current status of the research field is discussed and examples of superior performance and competitive advantage of plasma processes and techniques are given. These examples are selected to represent a range of applications of two major types of plasmas suitable for nanoscale synthesis and processing, namely thermally non-equilibrium and thermal plasmas. Major concepts and terminology used in the field are introduced. The paper also pinpoints the major challenges facing plasma-aided nanofabrication and identifies some emerging topics for future research. © 2007 IOP Publishing Ltd.
Resumo:
An innovative approach to precise tailoring of surface density, shapes, and sizes of single-crystalline α-Fe 2O 3 nanowires and nanobelts by controlling interactions of reactive oxygen plasma-generated species with the Fe surface is proposed. This strongly nonequilibrium, rapid, almost incubation-free, high-rate growth directly from the solid-solid interface can also be applied to other oxide materials and is based on deterministic control of the density of oxygen species and the surface conditions, which determine the nanostructure nucleation and growth.
Resumo:
Plasma-assisted synthesis of nanostructures is one of the most precise and effective approaches used in nanodevice fabrication. Here we report on the innovative approach of synthesizing nanostructured cadmium oxide films on Cd substrates using a reactive oxygen plasma-based process. Under certain conditions, the surface morphology features arrays of crystalline CdO nano/micropyramids. These nanostructures grow via unconventional plasma-assisted oxidation of a cadmium foil exposed to inductively coupled plasmas with a narrow range of process parameters. The growth of the CdO pyramidal nanostructures takes place in the solid-liquid-solid phase, with the rates determined by the interaction of plasma-produced oxygen atoms and ions with the surface. It is shown that the size of the pyramidal structures can be effectively controlled by the fluxes of oxygen atoms and ions impinging on the cadmium surface. The unique role of the reactive plasma environment in the controlled synthesis of CdO nanopyramidal structures is discussed as well.
Resumo:
Precise control of composition and internal structure is essential for a variety of novel technological applications which require highly tailored binary quantum dots (QDs) with predictable optoelectronic and mechanical properties. The delicate balancing act between incoming flux and substrate temperature required for the growth of compositionally graded (Si1-xC x; x varies throughout the internal structure), core-multishell (discrete shells of Si and C or combinations thereof) and selected composition (x set) QDs on low-temperature plasma/ion-flux-exposed Si(100) surfaces is investigated via a hybrid numerical simulation. Incident Si and C ions lead to localized substrate heating and a reduction in surface diffusion activation energy. It is shown that by incorporating ions in the influx, a steady-state composition is reached more quickly (for selected composition QDs) and the composition gradient of a Si1-xCx QD may be fine tuned; additionally (with other deposition conditions remaining the same), larger QDs are obtained on average. It is suggested that ionizing a portion of the influx is another way to control the average size of the QDs, and ultimately, their internal structure. Advantages that can be gained by utilizing plasma/ion-related controls to facilitate the growth of highly tailored, compositionally controlled quantum dots are discussed as well.
Resumo:
Nanocrystalline silicon carbide (nc-SiC) films are prepared by low-frequency inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane diluted with hydrogen at a substrate temperature of 500 °C. The effect of different hydrogen dilution ratios X [hydrogen flow (sccm) / silane + methane flow (sccm)] on the growth of nc-SiC films is investigated by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). At a low hydrogen dilution ratio X, cubic silicon carbide is the main crystal phase; whereas at a high hydrogen dilution ratio X, hexagonal silicon carbide is the main crystal phase. The SiC crystal phase transformation may be explained by the different surface mobility of reactive Si-based and C-based radicals deposited at different hydrogen dilution ratios X. The FTIR and XPS analyses show that the Si-C bonds are the main bonds in the films and elemental composition of SiC is nearly stoichiometric with almost equal share of silicon and carbon atoms.
Resumo:
The paper presents results of comparative investigation of carbon nanotubes growth processes in dense low-temperature plasma and on substrate surface. Hybrid/Monte-Carlo numerical simulations were used to demonstrate the differences in the ion fluxes, growth rates and kinetics of adsorbed atoms re-distribution on substrate and nanotubes surfaces. We show that the plasma parameters significantly affect the nanotubes growth kinetics. We demonstrate that the growth rates of the nanotubes in plasma and on surface can differ by three orders, and the specific fluxes to the nanotube in the plasma can exceed the flux to surface-grown nanotube by six orders. We also show that the metal catalyst used for the nanotubes production on surface and in arc is a subject to very different conditions and this may be a key factor for the nanotube growth mode. The obtained dependencies for the ion fluxes to the nanotubes and nanotubes growth rates on the plasma parameters may be useful for selection of the production methods.
Resumo:
The paper presents an investigation of self-organizational and -assembly processes of nanostructure growth on surfaces exposed to low-temperature plasmas. We have considered three main growth stages-initial, or sub-monolayer growth stage, separate nanostructure growth stage, and array growth stages with the characteristic sizes of several nm, several tens of nm, and several hundreds of nm, respectively, and have demonstrated, by the experimental data and hybrid multiscale numerical simulations, that the plasma parameters can strongly influence the surface processes and hence the kinetics of self-organization and -assembly. Our results show that plasma-controlled self-organization is a promising way to assemble large regular arrays of nanostructures. © 2008 IUPAC.
Resumo:
Examples of successful fabrication of low-dimensional semiconducting nanomaterials in the Integrated Plasma-Aided Nanofabrication Facility are shown. Self-assembled size-uniform ZnO nanoparticles, ultra-high-aspect ratio Si nanowires, vertically aligned cadmium sulfide nanostructures, and quarternary semiconducting SiCAlN nanomaterial have been synthesized using inductively coupled plasma-assisted RF magnetron sputtering deposition. The observed increase in crystallinity and growth rates of the nanostructures are explained by using a model of plasma-enhanced adatom surface diffusion under conditions of local energy exchange between the ion flux and the growth surface. Issues related to plasma-based growth of low-dimensional semiconducting nanomaterials are discussed as well. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.
Resumo:
The nonlinear interaction of high-frequency transverse electromagnetic waves normally incident from a plasma region on to a dielectric with two surface waves (SWs) propagating in the opposite directions along the interface is studied. This interaction is found to be stable causing a slight modulation to the SWs in contrast to the decay instability for longitudinal plasma waves. The corresponding nonlinear frequency shift of the SWs is obtained and analyzed.
Resumo:
Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.
Resumo:
Understanding the generation of reactive species in a plasma is an important step towards creating reliable and robust plasma-aided nanofabrication processes. A two-dimensional fluid simulation of the number densities of surface preparation species in a low-temperature, low-pressure, non-equilibrium Ar+H2 plasma is conducted. The operating pressure and H2 partial pressure have been varied between 70-200 mTorr and 0.1-50%, respectively. An emphasis is placed on the application of these results to nanofabrication. A reasonable balance between operating pressures and H 2 partial pressures that would optimize the number densities of the two working units largely responsible for activation and passivation of surface dangling bonds (Ar+ and H respectively) in order to achieve acceptable rates of surface activation and passivation is obtained. It is found that higher operating pressures (150-200 mTorr) and lower H2 partial pressures (∼5%) are required in order to ensure high number densities of Ar+ and H species. This paper contributes to the improvement of the controllability and predictability of plasma-based nanoassembly processes.