331 resultados para crops
Resumo:
Recent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100 °C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process. The potential of biomass saccharifying enzymes, endoglucanases (EG) from a thermophilic bacterium (Thermotoga maritima) and a mesophilic fungus (Trichoderma longibrachiatum), to retain their activity in aqueous buffer, acidified glycerol, and acidified ethylene glycol used as co-solvents at pretreatment temperatures at or below 100 °C were examined. The results show that despite its origin, T. longibrachiatum EG (Tl-EG) retained 75% of its activity after exposure to 100 °C for 5 min in aqueous buffer while T. maritima EG (Tm-EG) retained only 5% activity. However, at 90 °C both enzymes retained over 87% of their activity. In acidified (0.1% (w/w) H2SO4) glycerol, Tl-EG retained similar activity (80%) to that obtained in glycerol alone, while Tm-EG retained only 35%. With acidified ethylene glycol under these conditions, both Tl-EG and Tm-EG retained 36% of their activity. The results therefore show that Tl-EG is more stable in both acidified glycerol and ethylene glycol than Tm-EG. A preliminary kinetic study showed that pure glycerol improved the thermal stability of Tl-EG but destabilized Tm-EG, relative to the buffer solution. The half-lives of both Tl-EG and Tm-EG are 4.5 min in acidified glycerol, indicating that the effectiveness of these enzymes under typical pretreatment times of greater than 15 min will be considerably diminished. Attempts have been made to explain the differences in the results obtained between the two enzymes.
Resumo:
Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.
Resumo:
There is an increasing need for biodegradable, environmentally friendly plastics to replace the petroleum-based non-degradable plastics which litter and pollute the environment. Starch-based plastic film composites are becoming a popular alternative because of their low cost, biodegradability, the abundance of starch, and ease with which starch-based films can be chemically modified. This paper reports on the results of using sugar cane bagasse nanofibres to improve the physicochemical properties of starch-based polymers. The addition of bagasse nanofibre (2.5, 5, 10 or 20 wt%) to (modified) potato starch (‘Soluble starch’) reduced the moisture uptake by up to 17 % at 58 % relative humidity (RH). The film’s tensile strength and Young’s Modulus increased by up to 100 % and 200 % with 10 wt% and 20 wt% nanofibre respectively at 58% RH. The tensile strain reduced by up to 70 % at 20 wt% fibre loading. These results indicate that addition of sugar cane bagasse nanofibres significantly improved the properties of starch-based plastic films
Resumo:
Sweet sorghum is receiving significant global interest as an agro-industrial crop because of its capacity to co-produce energy, food, and feed products in integrated biorefineries. This report assesses the opportunities to develop a sweet sorghum industry in Australia, reports on research demonstrating the production of energy, food, and feed products, and assesses the potential economic and sustainability benefits of sweet sorghum biorefineries in the Australian context.
Resumo:
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.
Resumo:
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Resumo:
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
Resumo:
Knowledge of the amounts and types of fatty acids in groundnut oil is beneficial, particularly from a nutritional standpoint. Germplasm evaluation data for fatty acid composition on 819 accessions of groundnut (Arachis hypogaea L.) from the Australian Tropical Field Crops Genetic Resource Centre, Biloela, Queensland were examined. Data for eight quantitative fatty acid descriptors have been documented. Statistical assessment, via methods of pattern analysis, summarised and described the patterns of variation in fatty acid composition of the groundnut accessions in the Australian germplasm collection. Presentation of the results from principal components analysis and hierarchical cluster analysis using a biplot was shown to be a very useful interpretative tool. Such a biplot enables a simultaneous examination of the relationships among all the accessions and the fatty acids. Unlike that information available via database searches, the results from contribution analysis together with the biplot provide a global picture of the diversity available for use in plant breeding programs. The use of standardised data for eight fatty acids, compared to using three specific fatty acids, provided a better description of the total diversity available because it remains relevant with possible changes in the nutritional preferences for fatty acids. Fatty acid composition was found to vary in relation to the branching pattern of the accessions. This pattern is generally indicative of the botanical types of groundnuts; Virginia (alternate) compared to Spanish and Valencia (sequential) botanical types.
Resumo:
Data in germplasm collections contain a mixture of data types; binary, multistate and quantitative. Given the multivariate nature of these data, the pattern analysis methods of classification and ordination have been identified as suitable techniques for statistically evaluating the available diversity. The proximity (or resemblance) measure, which is in part the basis of the complementary nature of classification and ordination techniques, is often specific to particular data types. The use of a combined resemblance matrix has an advantage over data type specific proximity measures. This measure accommodates the different data types without manipulating them to be of a specific type. Descriptors are partitioned into their data types and an appropriate proximity measure is used on each. The separate proximity matrices, after range standardisation, are added as a weighted average and the combined resemblance matrix is then used for classification and ordination. Germplasm evaluation data for 831 accessions of groundnut (Arachis hypogaea L.) from the Australian Tropical Field Crops Genetic Resource Centre, Biloela, Queensland were examined. Data for four binary, five ordered multistate and seven quantitative descriptors have been documented. The interpretative value of different weightings - equal and unequal weighting of data types to obtain a combined resemblance matrix - was investigated by using principal co-ordinate analysis (ordination) and hierarchical cluster analysis. Equal weighting of data types was found to be more valuable for these data as the results provided a greater insight into the patterns of variability available in the Australian groundnut germplasm collection. The complementary nature of pattern analysis techniques enables plant breeders to identify relevant accessions in relation to the descriptors which distinguish amongst them. This additional information may provide plant breeders with a more defined entry point into the germplasm collection for identifying sources of variability for their plant improvement program, thus improving the utilisation of germplasm resources.
Resumo:
Reliable operation of a sugar factory boiler station is essential for efficient and timely processing of the cane supply. Sugar factory boilers have to contend with changes in fuel quality caused by variations in performance of the extraction station, different cane varieties and associated agronomic factors along with fluctuations in factory steam demand. These variations can affect the stability of combustion in boiler furnaces leading to reductions in boiler steam output and large furnace pressure fluctuations that can cause serious damage. This paper investigates the causes of unstable combustion, discusses aspects of boiler design that make a boiler more susceptible to unstable combustion and uses modelling to evaluate different options for improving combustion stability.
Resumo:
SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.
Resumo:
Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.
Resumo:
The mechanisms and the reaction products for the oxidation of sulfide ions in the presence of pyrite have been established. When the leach solution contains free sulfide ions, oxidation occurs via electron transfer from the sulfide ion to dissolved oxygen on the pyrite mineral surface, with polysulfides being formed as an intermediate oxidation product. In the absence of cyanide, the polysulfides are further oxidised to thiosulfate, whilst with cyanide present, thiocyanate and sulfite are also formed from the reaction of polysulfides with cyanide and dissolved oxygen. Polysulfide chain length has been shown to affect the final reaction products of polysulfide oxidation by dissolved oxygen. The rate of pyrite catalysed sulfide ion oxidation was found to be slower in cyanide solutions compared to cyanide free solutions. Mixed potential measurements indicated that the reduction of oxygen at the pyrite surface is hindered in the presence of cyanide. The presence of sulfide ions was also found to activate the pyrite surface, increasing its rate of oxidation by oxygen. This effect was particularly evident in the presence of cyanide; in the presence of sulfide the increase in total sulfur from pyrite oxidation was 2.3 mM in 7 h, compared to an increase of <1 mM in the absence of sulfide over 24 h.
Resumo:
An in situ X-ray diffraction investigation of goethite-seeded Al(OH)3 precipitation from synthetic Bayer liquor at 343 K has been performed. The presence of iron oxides and oxyhydroxides in the Bayer process has implications for alumina reversion, which causes significant process losses through unwanted gibbsite precipitation, and is also relevant for the nucleation and growth of scale on mild steel process equipment. The gibbsite, bayerite and nordstrandite polymorphs of Al(OH)3 precipitated from the liquor; gibbsite appeared to precipitate first, with subsequent formation of bayerite and nordstrandite. A Rietveld-based approach to quantitative phase analysis was implemented for the determination of absolute phase abundances as a function of time, from which kinetic information for the formation of the Al(OH)3 phases was determined.
Resumo:
It has been well established that organic compounds with adjacent hydroxyl groups in Bayer process liquor can inhibit gibbsite precipitation by acting as seed poisons. The degree of inhibition is a function of the number and stereochemistry of the hydroxyl groups. Seed poisons generally adsorb strongly onto hydrate surfaces, implying that surface coverage is the mechanism for yield inhibition. There are examples however of organics that strongly adsorb but do not lead to yield inhibition. There is a possibility that this apparent contradiction may be an artifact of differences in conditions between the adsorption and precipitation experiments. The present work investigates the adsorption and inhibition effects of a range of compounds under strictly similar conditions to clarify the role of adsorption on yield inhibition.