229 resultados para Space Telescope Science Institute (U.S.)
Resumo:
Capturing data from various data repositories and integrating them for productivity improvements is common in modern business organisations. With the well-accepted concept of achieving positive gains through investment in employee health and wellness, organisations have started to capture both employee health and non-health data as Employer Sponsored electronic Personal Health Records (ESPHRs). However, non-health related data in ESPHRs has hardly been taken into consideration with outcomes such as employee productivity potentially being suited for further validation and stimulation of ESPHR usage. Here we analyse selected employee demographic information (age, gender, marital status, and job grade) and health-related outcomes (absenteeism and presenteeism) of employees for evidence-based decision making. Our study considered demographic and health-related outcomes of 700 employees. Surprisingly, the analysis shows that employees with high sick leave rates are also high performers. A factor analysis shows 92% of the variance in the data can be explained by three factors, with the job grade capable of explaining 62% of the variance. Work responsibilities may drive employees to maintain high work performance despite signs of sickness, so ESPHRs should focus attention on high performers. This finding suggests new ways of extracting value from ESPHRs to support organisational health and wellness management to help assure sustainability in organisational productivity.
Resumo:
A5-GMR-1 is a synchronous stream cipher used to provide confidentiality for communications between satellite phones and satellites. The keystream generator may be considered as a finite state machine, with an internal state of 81 bits. The design is based on four linear feedback shift registers, three of which are irregularly clocked. The keystream generator takes a 64-bit secret key and 19-bit frame number as inputs, and produces an output keystream of length between $2^8$ and $2^{10}$ bits. Analysis of the initialisation process for the keystream generator reveals serious flaws which significantly reduce the number of distinct keystreams that the generator can produce. Multiple (key, frame number) pairs produce the same keystream, and the relationship between the various pairs is easy to determine. Additionally, many of the keystream sequences produced are phase shifted versions of each other, for very small phase shifts. These features increase the effectiveness of generic time-memory tradeoff attacks on the cipher, making such attacks feasible.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.
Resumo:
There is a growing interest to autonomously collect or manipulate objects in remote or unknown environments, such as mountains, gullies, bush-land, or rough terrain. There are several limitations of conventional methods using manned or remotely controlled aircraft. The capability of small Unmanned Aerial Vehicles (UAV) used in parallel with robotic manipulators could overcome some of these limitations. By enabling the autonomous exploration of both naturally hazardous environments, or areas which are biologically, chemically, or radioactively contaminated, it is possible to collect samples and data from such environments without directly exposing personnel to such risks. This paper covers the design, integration, and initial testing of a framework for outdoor mobile manipulation UAV. The framework is designed to allow further integration and testing of complex control theories, with the capability to operate outdoors in unknown environments. The results obtained act as a reference for the effectiveness of the integrated sensors and low-level control methods used for the preliminary testing, as well as identifying the key technologies needed for the development of an outdoor capable system.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
Accurately quantifying total greenhouse gas emissions (e.g. methane) from natural systems such as lakes, reservoirs and wetlands requires the spatial-temporal measurement of both diffusive and ebullitive (bubbling) emissions. Traditional, manual, measurement techniques provide only limited localised assessment of methane flux, often introducing significant errors when extrapolated to the whole-of-system. In this paper, we directly address these current sampling limitations and present a novel multiple robotic boat system configured to measure the spatiotemporal release of methane to atmosphere across inland waterways. The system, consisting of multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent operation, enables scientists to remotely evaluate the performance of sampling and modelling algorithms for real-world process quantification over extended periods of time. This paper provides an overview of the multi-robot sampling system including the vehicle and gas sampling unit design. Experimental results are shown demonstrating the system’s ability to autonomously navigate and implement an exploratory sampling algorithm to measure methane emissions on two inland reservoirs.
Resumo:
Autonomous underwater vehicles (AUVs) are becoming commonplace in the study of inshore coastal marine habitats. Combined with shipboard systems, scientists are able to make in-situ measurements of water column and benthic properties. In CSIRO, autonomous gliders are used to collect water column data, while surface vessels are used to collect bathymetry information through the use of swath mapping, bottom grabs, and towed video systems. Although these methods have provided good data coverage for coastal and deep waters beyond 50m, there has been an increasing need for autonomous in-situ sampling in waters less than 50m deep. In addition, the collection of benthic and water column data has been conducted separately, requiring extensive post-processing to combine data streams. As such, a new AUV was developed for in-situ observations of both benthic habitat and water column properties in shallow waters. This paper provides an overview of the Starbug X AUV system, its operational characteristics including vision-based navigation and oceanographic sensor integration.
Resumo:
Detection and prevention of global network satellite system (GNSS) “spoofing” attacks, or the broadcast of false global navigation satellite system services, has recently attracted much research interest. This survey aims to fill three gaps in the literature: first, to assess in detail the exact nature of threat scenarios posed by spoofing against the most commonly cited targets; second, to investigate the many practical impediments, often underplayed, to carrying out GNSS spoofing attacks in the field; and third, to survey and assess the effectiveness of a wide range of proposed defences against GNSS spoofing. Our conclusion lists promising areas of future research.
Resumo:
We propose a keyless and lightweight message transformation scheme based on the combinatorial design theory for the confidentiality of a message transmitted in multiple parts through a network with multiple independent paths, or for data stored in multiple parts by a set of independent storage services such as the cloud providers. Our combinatorial scheme disperses a message into v output parts so that (k-1) or less parts do not reveal any information about any message part, and the message can only be recovered by the party who possesses all v output parts. Combinatorial scheme generates an xor transformation structure to disperse the message into v output parts. Inversion is done by applying the same xor transformation structure on output parts. The structure is generated using generalized quadrangles from design theory which represents symmetric point and line incidence relations in a projective plane. We randomize our solution by adding a random salt value and dispersing it together with the message. We show that a passive adversary with capability of accessing (k-1) communication links or storage services has no advantage so that the scheme is indistinguishable under adaptive chosen ciphertext attack (IND-CCA2).
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.
Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models
Resumo:
The emergence of multiple satellite navigation systems, including BDS, Galileo, modernized GPS, and GLONASS, brings great opportunities and challenges for precise point positioning (PPP). We study the contributions of various GNSS combinations to PPP performance based on undifferenced or raw observations, in which the signal delays and ionospheric delays must be considered. A priori ionospheric knowledge, such as regional or global corrections, strengthens the estimation of ionospheric delay parameters. The undifferenced models are generally more suitable for single-, dual-, or multi-frequency data processing for single or combined GNSS constellations. Another advantage over ionospheric-free PPP models is that undifferenced models avoid noise amplification by linear combinations. Extensive performance evaluations are conducted with multi-GNSS data sets collected from 105 MGEX stations in July 2014. Dual-frequency PPP results from each single constellation show that the convergence time of undifferenced PPP solution is usually shorter than that of ionospheric-free PPP solutions, while the positioning accuracy of undifferenced PPP shows more improvement for the GLONASS system. In addition, the GLONASS undifferenced PPP results demonstrate performance advantages in high latitude areas, while this impact is less obvious in the GPS/GLONASS combined configuration. The results have also indicated that the BDS GEO satellites have negative impacts on the undifferenced PPP performance given the current “poor” orbit and clock knowledge of GEO satellites. More generally, the multi-GNSS undifferenced PPP results have shown improvements in the convergence time by more than 60 % in both the single- and dual-frequency PPP results, while the positioning accuracy after convergence indicates no significant improvements for the dual-frequency PPP solutions, but an improvement of about 25 % on average for the single-frequency PPP solutions.
Resumo:
The aim of our research is to iteratively refine and begin validating a proposed videogame reward typology and its associated definitions. A mixed methods approach has been taken so as to best evaluate and refine the taxonomy. The views of an expert focus group have been explored and considered. Separately, a review of the videogame rewards observed within recreational videogames has been undertaken and analyzed. The collective findings of both the focus group and the videogame reward review have prompted the redesign of an existing videogame reward taxonomy, resulting in more robust definitions with increased applicability.
Resumo:
A Delay Tolerant Network (DTN) is a dynamic, fragmented, and ephemeral network formed by a large number of highly mobile nodes. DTNs are ephemeral networks with highly mobile autonomous nodes. This requires distributed and self-organised approaches to trust management. Revocation and replacement of security credentials under adversarial influence by preserving the trust on the entity is still an open problem. Existing methods are mostly limited to detection and removal of malicious nodes. This paper makes use of the mobility property to provide a distributed, self-organising, and scalable revocation and replacement scheme. The proposed scheme effectively utilises the Leverage of Common Friends (LCF) trust system concepts to revoke compromised security credentials, replace them with new ones, whilst preserving the trust on them. The level of achieved entity confidence is thereby preserved. Security and performance of the proposed scheme is evaluated using an experimental data set in comparison with other schemes based around the LCF concept. Our extensive experimental results show that the proposed scheme distributes replacement credentials up to 35% faster and spreads spoofed credentials of strong collaborating adversaries up to 50% slower without causing any significant increase on the communication and storage overheads, when compared to other LCF based schemes.
Resumo:
Public key authentication is the verification of the identity-public key binding, and is foundational to the security of any network. The contribution of this thesis has been to provide public key authentication for a decentralised and resource challenged network such as an autonomous Delay Tolerant Network (DTN). It has resulted in the development and evaluation of a combined co-localisation trust system and key distribution scheme evaluated on a realistic large geographic scale mobility model. The thesis also addresses the problem of unplanned key revocation and replacement without any central authority.