231 resultados para K-arc
Resumo:
Purpose A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe3+ diffusion. Methods The chelating agent, xylenol orange, was chem. bonded to the gelling agent, polyvinyl alc. (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results This resulted in an optical d. dose sensitivity of 0.014 Gy-1, an auto-oxidn. rate of 0.0005 h-1, and a diffusion rate of 0.129 mm2 h-1; an 8% redn. compared to the original PVA-FX gel, which in practical terms adds approx. 1 h to the time span between irradn. and accurate read-out. Conclusions Because this initial method of chem. bonding xylenol orange to polyvinyl alc. has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alc. with xylenol orange must be developed for this system to gain clin. relevance.
Resumo:
More than 140 countries offer what has become the international norm for preteritiary education, namely a kindergarten through grade 12 (K-12) system. Why kindergarten? Because, research attests to the long-term learning and social benefits of school readiness programs. Why 12 grades? Because experience in many countries shows that a K-12 system of schooling is the minimum necessary to acquire the knowledge and expertise for university education, employment training, or decent work.
Resumo:
Purpose A retrospective planning study comparing volumetric arc therapy (VMAT) and stereotactic body radiotherapy (SBRT) treatment plans for non-small cell lung cancer (NSCLC). Methods and materials Five randomly selected early stage lung cancer patients were included in the study. For each patient, four plans were created: the SBRT plan and three VMAT plans using different optimisation methodologies. A total of 20 different plans were evaluated. The dose parameters of dose conformity results and the target dose constraints results were compared for these plans. Results The mean planning target volume (PTV) for all the plans (SBRT and VMAT) was 18·3 cm3, with a range from 15·6 to 20·1 cm3. The maximum dose tolerance to 1 cc of all the plans was within 140% (84 Gy) of the prescribed dose, and 95% of the PTV of all the plans received 100% of the prescribed dose (60 Gy). In all the plans, 99% of the PTV received a dose >90% of the prescribed dose, and the mean dose in all the plans ranged from 67 to 72 Gy. The planning target dose conformity for the SBRT and the VMAT (0°, 15° collimator single arc plans and dual arc) plans showed the tightness of the prescription isodose conformity to the target. Conclusions SBRT and VMAT are radiotherapy approaches that increase doses to small tumour targets without increasing doses to the organs at risk. Although VMAT offers an alternative to SBRT for NSCLC and the potential advantage of VMAT is the reduced treatment times over SBRT, the statistical results show that there was no significant difference between the SBRT and VMAT optimised plans in terms of dose conformity and organ-at-risk sparing.
Resumo:
Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.
Resumo:
Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates.
Resumo:
The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn) and decorated 2D Sn (SnH and SnF) honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K), two practical strategies (i.e., the application of strain and functionalization) are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation.
Resumo:
A 59-year-old man was mistakenly prescribed Slow-Na instead of Slow-K due to incorrect selection from a drop-down list in the prescribing software. This error was identified by a pharmacist during a home medicine review (HMR) before the patient began taking the supplement. The reported error emphasizes the need for vigilance due to the emergence of novel look-alike, sound-alike (LASA) drug pairings. This case highlights the important role of pharmacists in medication safety.
Resumo:
Integrated exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed through monitoring of urinary mono-hydroxylated PAHs (OH-PAHs). The aim of this study was to provide the first assessment of exposure to PAHs in a large sample of the population in Queensland, Australia including exposure to infant (0-4. years). De-identified urine specimens, obtained from a pathology laboratory, were stratified by age and sex, and pooled (n. =. 24 pools of 100) and OH-PAHs were measured by gas chromatography-isotope dilution-tandem mass spectrometry. Geometric mean (GM) concentrations ranged from 30. ng/L (4-hydroxyphenanthrene) to 9221. ng/L (1-naphthol). GM of 1-hydroxypyrene, the most commonly used PAH exposure biomarker, was 142. ng/L. The concentrations of OH-PAHs found in this study are consistent with those in developed countries and lower than those in developing countries. We observed no association between sex and OH-PAH concentrations. However, we observed lower urinary concentrations of all OH-PAHs in samples from infants (0-4. years), children (5-14. years) and the elderly (>. 60. year old) compared with samples from other age groups (15-29, 30-44 and 45-59. years) which may be attributed to age-dependent behaviour-specific exposure sources.
Resumo:
Aberrant glycosylation of proteins is a hallmark of tumorigenesis, and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is non-invasive, technically straightforward and the sample collection and storage is relatively easy. Although, differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimised a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analysed with LC-MS/MS to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.
Resumo:
In a very recent study [1] the Renormalisation Group (RNG) turbulence model was used to obtain flow predictions in a strongly swirling quarl burner, and was found to perform well in predicting certain features that are not well captured using less sophisticated models of turbulence. The implication is that the RNG approach should provide an economical and reliable tool for the prediction of swirling flows in combustor and furnace geometries commonly encountered in technological applications. To test this hypothesis the present work considers flow in a model furnace for which experimental data is available [2]. The essential features of the flow which differentiate it from the previous study [1] are that the annular air jet entry is relatively narrow and the base wall of the cylindrical furnace is at 90 degrees to the inlet pipe. For swirl numbers of order 1 the resulting flow is highly complex with significant inner and outer recirculation regions. The RNG and standard k-epsilon models are used to model the flow for both swirling and non-swirling entry jets and the results compared with experimental data [2]. Near wall viscous effects are accounted for in both models via the standard wall function formulation [3]. For the RNG model, additional computations with grid placement extending well inside the near wall viscous-affected sublayer are performed in order to assess the low Reynolds number capabilities of the model.
Resumo:
In this work we numerically model isothermal turbulent swirling flow in a cylindrical burner. Three versions of the RNG k-epsilon model are assessed against performance of the standard k-epsilon model. Sensitivity of numerical predictions to grid refinement, differing convective differencing schemes and choice of (unknown) inlet dissipation rate, were closely scrutinised to ensure accuracy. Particular attention is paid to modelling the inlet conditions to within the range of uncertainty of the experimental data, as model predictions proved to be significantly sensitive to relatively small changes in upstream flow conditions. We also examine the characteristics of the swirl--induced recirculation zone predicted by the models over an extended range of inlet conditions. Our main findings are: - (i) the standard k-epsilon model performed best compared with experiment; - (ii) no one inlet specification can simultaneously optimize the performance of the models considered; - (iii) the RNG models predict both single-cell and double-cell IRZ characteristics, the latter both with and without additional internal stagnation points. The first finding indicates that the examined RNG modifications to the standard k-e model do not result in an improved eddy viscosity based model for the prediction of swirl flows. The second finding suggests that tuning established models for optimal performance in swirl flows a priori is not straightforward. The third finding indicates that the RNG based models exhibit a greater variety of structural behaviour, despite being of the same level of complexity as the standard k-e model. The plausibility of the predicted IRZ features are discussed in terms of known vortex breakdown phenomena.
Resumo:
Quantifying nitrous oxide (N(2)O) fluxes, a potent greenhouse gas, from soils is necessary to improve our knowledge of terrestrial N(2)O losses. Developing universal sampling frequencies for calculating annual N(2)O fluxes is difficult, as fluxes are renowned for their high temporal variability. We demonstrate daily sampling was largely required to achieve annual N(2)O fluxes within 10% of the best estimate for 28 annual datasets collected from three continents, Australia, Europe and Asia. Decreasing the regularity of measurements either under- or overestimated annual N(2)O fluxes, with a maximum overestimation of 935%. Measurement frequency was lowered using a sampling strategy based on environmental factors known to affect temporal variability, but still required sampling more than once a week. Consequently, uncertainty in current global terrestrial N(2)O budgets associated with the upscaling of field-based datasets can be decreased significantly using adequate sampling frequencies.