Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities


Autoria(s): Brines, M.; Dall’Osto, M.; Beddows, D.C.S.; Harrison, R.M.; Gómez-Moreno, F.; Núñez, L.; Artíñano, B.; Costabile, F.; Gobbi, G.P.; Salimi, F.; Morawska, L.; Sioutas, C.; Querol, X.
Data(s)

2015

Resumo

Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

Formato

application/pdf

Identificador

http://eprints.qut.edu.au/91269/

Publicador

Copernicus GmbH

Relação

http://eprints.qut.edu.au/91269/3/91269.pdf

DOI:10.5194/acp-15-5929-2015

Brines, M., Dall’Osto, M., Beddows, D.C.S., Harrison, R.M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G.P., Salimi, F., Morawska, L., Sioutas, C., & Querol, X. (2015) Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmospheric Chemistry and Physics, 15(10), pp. 5929-5945.

http://purl.org/au-research/grants/ARC/DP0985726

Direitos

Copyright 2015 The Author(s)

Fonte

School of Chemistry, Physics & Mechanical Engineering; Institute of Health and Biomedical Innovation; Science & Engineering Faculty

Palavras-Chave #040101 Atmospheric Aerosols #050206 Environmental Monitoring #090799 Environmental Engineering not elsewhere classified #129999 Built Environment and Design not elsewhere classified #Road traffic emissions #air quality #air pollution #ultrafine particles
Tipo

Journal Article