315 resultados para Autonomous Underwater Vehicles
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
Emission rates of ammonia (NH3) are reported for a fleet of 130 light-, medium-, and heavy-duty vehicles recruited in Guangzhou, China. NH3 measurements were performed using Nessler's Reagents spectrophotometry and nationwide standard chassis dynamometer test cycles required by Chinese EPA. Emissions of CO and NOx were also measured during these test cycles. Emission factors of NH3 were calculated for each type of vehicle and used to estimate the total emissions of NH3 from motor vehicles in Guangzhou (GZ) in 2009. Emission factors of NH3 show large variations among different categories of vehicles, with a range from 4 to 138 mg km-1. The average emissions of NH3 in Guangzhou in 2009 were estimated to be 983 t, with a range from 373 to 2136 t. In addition, it was found that vehicles with the highest NH3 emission rates possess the following characteristics: mediumand heavy-duty vehicles, certified with out-of-date emission standards, mid-range odometer readings, and higher CO and NOx emission rates. The results of this study will be useful for developing NH3 emissions inventories in Guangzhou and other urban areas in China.
Resumo:
This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors
Resumo:
1. Autonomous acoustic recorders are widely available and can provide a highly efficient method of species monitoring, especially when coupled with software to automate data processing. However, the adoption of these techniques is restricted by a lack of direct comparisons with existing manual field surveys. 2. We assessed the performance of autonomous methods by comparing manual and automated examination of acoustic recordings with a field-listening survey, using commercially available autonomous recorders and custom call detection and classification software. We compared the detection capability, time requirements, areal coverage and weather condition bias of these three methods using an established call monitoring programme for a nocturnal bird, the little spotted kiwi(Apteryx owenii). 3. The autonomous recorder methods had very high precision (>98%) and required <3% of the time needed for the field survey. They were less sensitive, with visual spectrogram inspection recovering 80% of the total calls detected and automated call detection 40%, although this recall increased with signal strength. The areal coverage of the spectrogram inspection and automatic detection methods were 85% and 42% of the field survey. The methods using autonomous recorders were more adversely affected by wind and did not show a positive association between ground moisture and call rates that was apparent from the field counts. However, all methods produced the same results for the most important conservation information from the survey: the annual change in calling activity. 4. Autonomous monitoring techniques incur different biases to manual surveys and so can yield different ecological conclusions if sampling is not adjusted accordingly. Nevertheless, the sensitivity, robustness and high accuracy of automated acoustic methods demonstrate that they offer a suitable and extremely efficient alternative to field observer point counts for species monitoring.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
This paper outlines an innovative and feasible flight control scheme for a rotary-wing unmanned aerial system (RUAS) with guaranteed safety and reliable flight quality in a gusty environment. The proposed control methodology aims to increase gust-attenuation capability of a RUAS to ensure improved flight performance when strong gusts occur. Based on the design of an effective estimator, an altitude controller is firstly constructed to synchronously compensate for fluctuations of the main rotor thrust which might lead to crashes in a gusty environment. Afterwards, a nonlinear state feedback controller is proposed to stabilize horizontal positions of the RUAS with gust-attenuation property. Performance of the proposed control framework is evaluated using parameters of a Vario XLC helicopter and high-fidelity simulations show that the proposed controllers can effectively reduce side-effect of gusts and demonstrate performance improvement when compared with the proportional-integral-derivative (PID) controllers.
Resumo:
This paper presents a nonlinear gust-attenuation controller based on constrained neural-network (NN) theory. The controller aims to achieve sufficient stability and handling quality for a fixed-wing unmanned aerial system (UAS) in a gusty environment when control inputs are subjected to constraints. Constraints in inputs emulate situations where aircraft actuators fail requiring the aircraft to be operated with fail-safe capability. The proposed controller enables gust-attenuation property and stabilizes the aircraft dynamics in a gusty environment. The proposed flight controller is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equations based on an policy iteration (PI) approach. Performance of the controller is evaluated using a high-fidelity six degree-of-freedom Shadow UAS model. Simulations show that our controller demonstrates great performance improvement in a gusty environment, especially in angle-of-attack (AOA), pitch and pitch rate. Comparative studies are conducted with the proportional-integral-derivative (PID) controllers, justifying the efficiency of our controller and verifying its suitability for integration into the design of flight control systems for forced landing of UASs.
Resumo:
KEEP CLEAR pavement markings are widely used at urban signalised intersections to indicate to drivers to avoid entering blocked intersections. For example, ‘Box junctions’ are most widely used in the United Kingdom and other European countries. However, in Australia, KEEP CLEAR markings are mostly used to improve access from side roads onto a main road, especially when the side road is very close to a signalised intersection. This paper aims to reveal how the KEEP CLEAR markings affect the dynamic performance of the queuing vehicles on the main road, where the side road access is near a signalised intersection. Raw traffic field data was collected from an intersection at the Gold Coast, Australia, and the Kanade–Lucas–Tomasi (KLT) feature tracker approach was used to extract dynamic vehicle data from the raw video footage. The data analysis reveals that the KEEP CLEAR markings generate positive effects on the queuing vehicles in discharge on the main road. This finding refutes the traditional viewpoint that the KEEP CLEAR pavement markings will cause delay for the queuing vehicles’ departure due to the enlarged queue spacing. Further studies are suggested in this paper as well.
Resumo:
This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.
Resumo:
Monitoring and estimation of marine populations is of paramount importance for the conservation and management of sea species. Regular surveys are used to this purpose followed often by a manual counting process. This paper proposes an algorithm for automatic detection of dugongs from imagery taken in aerial surveys. Our algorithm exploits the fact that dugongs are rare in most images, therefore we determine regions of interest partially based on color rarity. This simple observation makes the system robust to changes in illumination. We also show that by applying the extended-maxima transform on red-ratio images, submerged dugongs with very fuzzy edges can be detected. Performance figures obtained here are promising in terms of degree of confidence in the detection of marine species, but more importantly our approach represents a significant step in automating this type of surveys.
Resumo:
Plug-in electric vehicles (PEVs) are increasingly popular in the global trend of energy saving and environmental protection. However, the uncoordinated charging of numerous PEVs can produce significant negative impacts on the secure and economic operation of the power system concerned. In this context, a hierarchical decomposition approach is presented to coordinate the charging/discharging behaviors of PEVs. The major objective of the upper-level model is to minimize the total cost of system operation by jointly dispatching generators and electric vehicle aggregators (EVAs). On the other hand, the lower-level model aims at strictly following the dispatching instructions from the upper-level decision-maker by designing appropriate charging/discharging strategies for each individual PEV in a specified dispatching period. Two highly efficient commercial solvers, namely AMPL/IPOPT and AMPL/CPLEX, respectively, are used to solve the developed hierarchical decomposition model. Finally, a modified IEEE 118-bus testing system including 6 EVAs is employed to demonstrate the performance of the developed model and method.
Resumo:
As a good solution to the shortage and environmental unfriendliness of fossil fuels, plug-in electric vehicles (PEVs) attract much interests of the public. To investigate the problems caused by the integration of numerous PEVs, a lot of research work has been done on the grid impacts of PEVs in aspects including thermal loading, voltage regulation, transformer loss of life, unbalance, losses, and harmonic distortion levels. This paper surveys the-state-of-the-art of the research in this area and outline three possible measures for a power grid company to make full use of PEVs.
Resumo:
Vehicular accidents are one of the deadliest safety hazards and accordingly an immense concern of individuals and governments. Although, a wide range of active autonomous safety systems, such as advanced driving assistance and lane keeping support, are introduced to facilitate safer driving experience, these stand-alone systems have limited capabilities in providing safety. Therefore, cooperative vehicular systems were proposed to fulfill more safety requirements. Most cooperative vehicle-to-vehicle safety applications require relative positioning accuracy of decimeter level with an update rate of at least 10 Hz. These requirements cannot be met via direct navigation or differential positioning techniques. This paper studies a cooperative vehicle platform that aims to facilitate real-time relative positioning (RRP) among adjacent vehicles. The developed system is capable of exchanging both GPS position solutions and raw observations using RTCM-104 format over vehicular dedicated short range communication (DSRC) links. Real-time kinematic (RTK) positioning technique is integrated into the system to enable RRP to be served as an embedded real-time warning system. The 5.9 GHz DSRC technology is adopted as the communication channel among road-side units (RSUs) and on-board units (OBUs) to distribute GPS corrections data received from a nearby reference station via the Internet using cellular technologies, by means of RSUs, as well as to exchange the vehicular real-time GPS raw observation data. Ultimately, each receiving vehicle calculates relative positions of its neighbors to attain a RRP map. A series of real-world data collection experiments was conducted to explore the synergies of both DSRC and positioning systems. The results demonstrate a significant enhancement in precision and availability of relative positioning at mobile vehicles.
Resumo:
This thesis presents novel vision based control solutions that enable fixed-wing Unmanned Aerial Vehicles to perform tasks of inspection over infrastructure including power lines, pipe lines and roads. This is achieved through the development of techniques that combine visual servoing with alternate manoeuvres that assist the UAV in both following and observing the feature from a downward facing camera. Control designs are developed through techniques of Image Based Visual Servoing to utilise sideslip through Skid-to-Turn and Forward-Slip manoeuvres. This allows the UAV to simultaneously track and collect data over the length of infrastructure, including straight segments and the transition where these meet.