251 resultados para extraction efficiency
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.
Resumo:
Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.
Resumo:
Building energy-efficiency (BEE) is the key to drive the promotion of energy saving in building sector. A large variety of building energy-efficiency policy instrument exist. Some are mandatory, some are soft scheme, and some use economic incentives from country to country. This paper presents the current development of implementing BEE policy instruments by examining the practices of BEE in seven selected countries and regions. In the study, BEE policy instruments are classified into three groups, including mandatory administration control instruments, economic incentive instruments and voluntary scheme instruments. The study shows that different countries have adopted different instruments in their practices for achieving the target of energy-saving and gained various kinds of experiences. It is important to share these experiences gained.
Resumo:
This study models the joint production of desirable and undesirable output production (that is, CO2 emissions) of airlines. The Malmquist–Luenberger productivity index is employed to measure productivity growth when undesirable output production is incorporated into the production model. The results show that pollution abatement activities of airlines lowers productivity growth, which suggests that the traditional approach of measuring productivity growth, which ignores CO2 emissions, overstates ‘true’ productivity growth. The reliability of the results is also tested and verified using confidence intervals based on bootstrapping.
Resumo:
Improvements in the effectiveness and efficiency of supply-side waste management are necessary in many countries. In Japan, municipalities with limited budgets have delayed the introduction of new waste-management technologies. Thus, the central government has used subsidies to encourage municipalities to adopt certain new technologies to improve waste-management efficiency. In this study, we measure the efficiency of waste management and explore how technology is related to technical efficiency. We find that municipalities are likely to adopt less-efficient technologies and that the central government's policies are likely to promote inefficient technology adoption by local governments.
Resumo:
The objective of this study is to examine technical efficiency and productivity growth in the Indian banking sector over the period from 2004 to 2011. We apply an innovative methodological approach introduced by Chen et al. (2011) and Barros et al. (2012), who use a weighted Russell directional distance model to measure technical inefficiency. We further modify and extend that model to measure TFP change with NPLs. We find that the inefficiency levels are significantly different among the three ownership structure of banks in India. Foreign banks have strong market position in India and they pull the production frontier in a more efficient direction. SPBs and domestic private banks show considerably higher inefficiency. We conclude that the restructuring policy applied in the late 1990s and early 2000s by the Indian government has not had a long-lasting effect.
Resumo:
2,4,6-trinitrotoluene (TNT) is one of the most commonly used nitro aromatic explosives in landmine, military and mining industry. This article demonstrates rapid and selective identification of TNT by surface-enhanced Raman spectroscopy (SERS) using 6-aminohexanethiol (AHT) as a new recognition molecule. First, Meisenheimer complex formation between AHT and TNT is confirmed by the development of pink colour and appearance of new band around 500 nm in UV-visible spectrum. Solution Raman spectroscopy study also supported the AHT:TNT complex formation by demonstrating changes in the vibrational stretching of AHT molecule between 2800-3000 cm−1. For surface enhanced Raman spectroscopy analysis, a self-assembled monolayer (SAM) of AHT is formed over the gold nanostructure (AuNS) SERS substrate in order to selectively capture TNT onto the surface. Electrochemical desorption and X-ray photoelectron studies are performed over AHT SAM modified surface to examine the presence of free amine groups with appropriate orientation for complex formation. Further, AHT and butanethiol (BT) mixed monolayer system is explored to improve the AHT:TNT complex formation efficiency. Using a 9:1 AHT:BT mixed monolayer, a very low detection limit (LOD) of 100 fM TNT was realized. The new method delivers high selectivity towards TNT over 2,4 DNT and picric acid. Finally, real sample analysis is demonstrated by the extraction and SERS detection of 302 pM of TNT from spiked.
Resumo:
Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly produced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with handheld Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.
Resumo:
Emerging 21st century challenges require higher education institutions (HEIs) to play a key role in developing graduates and professionals, particularly in engineering and design, who can forge sustainable solutions. The trouble is there’s currently a significant lag in the preparedness of HEIs to provide the stream of professionals needed. Addressing energy efficiency competencies is one critical area.
Resumo:
This paper describes recent updates to a milling train extraction model used to assess and predict the performance of a milling train. An extension was made to the milling unit model for the bagasse mills to replace the imbibition coefficient with crushing factor and mixing efficiency. New empirical relationships for reabsorption factor, imbibition coefficient, crushing factor, mixing efficiency and purity ratio were developed. The new empirical relationships were tested against factory measurements and previous model predictions. The updated model has been implemented in the SysCAD process modelling software. New additions to the model implementation include: a shredder model to assess or predict cane preparation, mill and shredder drives for power consumption and an updated imbibition control system to add allow water to be added to intermediate mills.
Resumo:
Objective This paper presents an automatic active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort, and (2) the robustness of incremental active learning framework across different selection criteria and datasets is determined. Materials and methods The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional Random Fields as the supervised method, and least confidence and information density as two selection criteria for active learning framework were used. The effect of incremental learning vs. standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. Two clinical datasets were used for evaluation: the i2b2/VA 2010 NLP challenge and the ShARe/CLEF 2013 eHealth Evaluation Lab. Results The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared to the Random sampling baseline, the saving is at least doubled. Discussion Incremental active learning guarantees robustness across all selection criteria and datasets. The reduction of annotation effort is always above random sampling and longest sequence baselines. Conclusion Incremental active learning is a promising approach for building effective and robust medical concept extraction models, while significantly reducing the burden of manual annotation.
Resumo:
This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
Poly sodium acrylate (PSA)-coated Magnetic Nanoparticles (PSA-MNPs) were synthesized as smart osmotic draw agent (SMDA) for water desalination by forward osmosis (FO) process. The PSA-coated MNPs demonstrated significantly higher osmotic pressure (~ 30 fold) as well as high FO water flux (~ 2–3 fold) when compared to their polymer (polyelectrolyte) counterpart, even at a very low concentration of ~ 0.13 wt.% in the draw solution. The PSA polymer chain conformation – coiled to extended – demonstrates a significant impact on the availability of the polymer hydrophilic groups in solution which is the driving force to attain higher osmotic pressure and water flux. When an optimum concentration of the polymer was anchored to a NP surface, the polymer chains assume an extended open conformation making the functional hydrophilic groups available to attract water molecules. This in turn boosts the osmotic pressure and FO water flux of the PSA-MNP draw agents. The low concentration of the PSA-MNP osmotic agent and the associated high water flux enhances the cost-effectiveness of our proposed SMDA system. In addition, easier magnetic separation and regeneration of the SMDA also improves its usability making it efficient, cost-effective and environment-friendly.