244 resultados para Design and Technology
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
To date, designed topologies for DC-AC inversion with both voltage-buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the "alternative phase opposition disposition" (APOD) modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage-boost section of the circuits by simply re-routing the gating commands of the remaining switches without influencing the ac output voltage amplitude. To verify the validity of the proposed inverters, Matlab/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.
Resumo:
To date, designed topologies for DC-AC inversion with both voltage buck and boost capabilities are mainly focused on two-level circuitries with extensions to three-level possibilities left nearly unexplored. Contributing to this area of research, this paper presents the design of a number of viable buck-boost three-level inverters that can also support bidirectional power conversion. The proposed front-end circuitry is developed from the Cuk-derived buck-boost two-level inverter, and by using the ldquoalternative phase opposition dispositionrdquo modulation scheme, the buck-boost three-level inverters can perform distinct five-level line voltage and three-level phase voltage switching by simply controlling the active switches located in the designed voltage boost section of the circuits. As a cost saving option, one active switch can further be removed from the voltage boost section of the circuits by simply rerouting the gating commands of the remaining switches without influencing the AC output voltage amplitude. To verify the validity of the proposed inverters, MATLAB/PLECS simulations were performed before a laboratory prototype was implemented for experimental testing.
Resumo:
In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.
Resumo:
Curriculum scholars and teachers working for social justice and equity have been caught up in acrimonious and polarizing debates over content, ideology and disciplinary knowledge. At the forefront in cutting through these debates and addressing the practical questions involved, this book is distinctive in looking to the technical form of the curriculum rather than its content for solutions. The editors and contributors, all leading international scholars, advance a unified, principled approach to the design of syllabus documents that aims for high quality/high equity educational outcomes and enhances teacher professionalism.
Resumo:
Foreign direct investment (FDI) is an effective conduit for technology transfer through technology spillovers to domestically owned firms in the host country. This study analyses the significance of productivity externalities of FDI to local firms, in terms of both intra-industry and inter-industry spillovers, using firm-level data from Kenya, Tanzania and Zimbabwe. The results show evidences in support of intra- and inter-industry productivity spillovers from FDI for Kenya and Zimbabwe. © 2010 Taylor & Francis.
Resumo:
Purpose Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. Methods Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable “air cap”. A set of output ratios (ORfclin Det ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORfclin Det measured using an IBA stereotactic field diode (SFD). k fclin, f msr Qclin,Qmsr was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that k fclin, f msr Qclin,Qmsr was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which s “correction-free” in small field relative dosimetry. In addition, the feasibility of experimentally transferring k fclin, f msr Qclin,Qmsr values from the SFD to unknown diodes was tested by comparing the experimentally transferred k fclin, f msr Qclin,Qmsr values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k fclin, f msr Qclin,Qmsr for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k fclin, f msr Qclin,Qmsr from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.
Resumo:
There is an increasing desire and emphasis to integrate assessment tools into the everyday training environment of athletes. These tools are intended to fine-tune athlete development, enhance performance and aid in the development of individualised programmes for athletes. The areas of workload monitoring, skill development and injury assessment are expected to benefit from such tools. This paper describes the development of an instrumented leg press and its application to testing leg dominance with a cohort of athletes. The developed instrumented leg press is a 45° reclining sled-type leg press with dual force plates, a displacement sensor and a CCD camera. A custom software client was developed using C#. The software client enabled near-real-time display of forces beneath each limb together with displacement of the quad track roller system and video feedback of the exercise. In recording mode, the collection of athlete particulars is prompted at the start of the exercise, and pre-set thresholds are used subsequently to separate the data into epochs from each exercise repetition. The leg press was evaluated in a controlled study of a cohort of physically active adults who performed a series of leg press exercises. The leg press exercises were undertaken at a set cadence with nominal applied loads of 50%, 100% and 150% of body weight without feedback. A significant asymmetry in loading of the limbs was observed in healthy adults during both the eccentric and concentric phases of the leg press exercise (P < .05). Mean forces were significantly higher beneath the non-dominant limb (4–10%) and during the concentric phase of the muscle action (5%). Given that symmetrical loading is often emphasized during strength training and remains a common goal in sports rehabilitation, these findings highlight the clinical potential for this instrumented leg press system to monitor symmetry in lower-limb loading during progressive strength training and sports rehabilitation protocols.
Resumo:
This study describes a field experiment assessing the effectiveness of education and technological innovation in reducing air pollution generated by domestic wood heaters. Two-hundred and twenty four households from a small regional center in Australia were randomly assigned to one of four experimental conditions: (1) Education only – households received a wood smoke reduction education pack containing information about the negative health impacts of wood smoke pollution, and advice about wood heater operation and firewood management; (2) SmartBurn only – households received a SmartBurn canister designed to improve combustion and help wood fires burn more efficiently, (3) Education and SmartBurn, and (4) neither Education nor SmartBurn (control). Analysis of covariance, controlling for pre-intervention household wood smoke emissions, wood moisture content, and wood heater age, revealed that education and SmartBurn were both associated with significant reduction in wood smoke emissions during the post-intervention period. Follow-up mediation analyses indicated that education reduced emissions by improving wood heater operation practices, but not by increasing health risk perceptions. As predicted, SmartBurn exerted a direct effect on emission levels, unmediated by wood heater operation practices or health risk perceptions.
Resumo:
Roundabouts reduce the frequency and severity of motor vehicle crashes and therefore the number installed has increased dramatically in the last 20 years in many countries. However, the safety impacts of roundabouts for bicycle riders are a source of concern, with many studies reporting lower injury reductions for cyclists than car occupants. This paper summarises the results of a project undertaken to provide guidance on how cyclist safety could be improved at existing roundabouts in Queensland, Australia, where cyclist crashes have been increasing and legislation gives motor vehicles priority over cyclists and pedestrians at roundabouts. The review of international roundabout design guidelines identified two schools of design: tangential roundabouts (common in English-speaking countries, including Australia), which focus on minimising delay to motor vehicles, and radial roundabouts (common in continental Europe), which focus on speed reduction and safety. While it might be expected that radial roundabouts would be safer for cyclists, there have been no studies to confirm this view. Most guidelines expect cyclists to act as vehicle traffic in single-lane, typically low-speed, roundabouts. Some jurisdictions do not permit cyclists to travel on multi-lane roundabouts, and recommend segregated bicycle facilities because of their lowest crash risk for cyclists. Given that most bicycle-vehicle crashes at roundabouts involve an entering vehicle and a circulating cyclist, the greatest challenges appear to be reducing the speed of motor vehicles on the approach/entry to roundabouts and other ways of maximizing the likelihood that cyclists will be seen. Lower entry speeds are likely to underpin the greater safety of compact roundabouts for cyclists and, conversely, the higher than expected crash rates at two-lane roundabouts. European research discourages the use of bike lanes in roundabouts which position cyclists at the edge of the road and contributes to cyclists being less likely to be noticed by drivers.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
Background The incidence of clinically apparent stroke in transcatheter aortic valve implantation (TAVI) exceeds that of any other procedure performed by interventional cardiologists and, in the index admission, occurs more than twice as frequently with TAVI than with surgical aortic valve replacement (SAVR). However, this represents only a small component of the vast burden of neurological injury that occurs during TAVI, with recent evidence suggesting that many strokes are clinically silent or only subtly apparent. Additionally, insult may manifest as slight neurocognitive dysfunction rather than overt neurological deficits. Characterisation of the incidence and underlying aetiology of these neurological events may lead to identification of currently unrecognised neuroprotective strategies. Methods The Silent and Apparent Neurological Injury in TAVI (SANITY) Study is a prospective, multicentre, observational study comparing the incidence of neurological injury after TAVI versus SAVR. It introduces an intensive, standardised, formal neurologic and neurocognitive disease assessment for all aortic valve recipients, regardless of intervention (SAVR, TAVI), valve-type (bioprosthetic, Edwards SAPIEN-XT) or access route (sternotomy, transfemoral, transapical or transaortic). Comprehensive monitoring of neurological insult will also be recorded to more fully define and compare the neurological burden of the procedures and identify targets for harm minimisation strategies. Discussion The SANITY study undertakes the most rigorous assessment of neurological injury reported in the literature to date. It attempts to accurately characterise the insult and sustained injury associated with both TAVI and SAVR in an attempt to advance understanding of this complication and associations thus allowing for improved patient selection and procedural modification.