199 resultados para blood vessel tone
Resumo:
It has been well accepted that over 50% of cerebral ischemic events are the result of rupture of vulnerable carotid atheroma and subsequent thrombosis. Such strokes are potentially preventable by carotid interventions. Selection of patients for intervention is currently based on the severity of carotid luminal stenosis. It has been, however, widely accepted that luminal stenosis alone may not be an adequate predictor of risk. To evaluate the effects of degree of luminal stenosis and plaque morphology on plaque stability, we used a coupled nonlinear time-dependent model with flow-plaque interaction simulation to perform flow and stress/strain analysis for stenotic artery with a plaque. The Navier-Stokes equations in the Arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing equations for the fluid. The Ogden strain energy function was used for both the fibrous cap and the lipid pool. The plaque Principal stresses and flow conditions were calculated for every case when varying the fibrous cap thickness from 0.1 to 2mm and the degree of luminal stenosis from 10% to 90%. Severe stenosis led to high flow velocities and high shear stresses, but a low or even negative pressure at the throat of the stenosis. Higher degree of stenosis and thinner fibrous cap led to larger plaque stresses, and a 50% decrease of fibrous cap thickness resulted in a 200% increase of maximum stress. This model suggests that fibrous cap thickness is critically related to plaque vulnerability and that, even within presence of moderate stenosis, may play an important role in the future risk stratification of those patients when identified in vivo using high resolution MR imaging.
Resumo:
Background and Purpose Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow-structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods A coupled nonlinear time-dependent model with a flow-plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.
Resumo:
Background Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors. Methods We applied a genetic epidemiology method based on conjunction false discovery rate (FDR) that combines summary statistics from different genome-wide association studies (GWAS), and allows identification of genetic overlap between two phenotypes. We evaluated summary statistics from large, multi-centre GWA studies of PCA (n = 50 000) and CVD risk factors (n = 200 000) [triglycerides (TG), low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol, systolic blood pressure, body mass index, waist-hip ratio and type 2 diabetes (T2D)]. Enrichment of single nucleotide polymorphisms (SNPs) associated with PCA and CVD risk factors was assessed with conditional quantile-quantile plots and the Anderson-Darling test. Moreover, we pinpointed shared loci using conjunction FDR. Results We found the strongest enrichment of P-values in PCA was conditional on LDL and conditional on TG. In contrast, we found only weak enrichment conditional on HDL or conditional on the other traits investigated. Conjunction FDR identified altogether 17 loci; 10 loci were associated with PCA and LDL, 3 loci were associated with PCA and TG and additionally 4 loci were associated with PCA, LDL and TG jointly (conjunction FDR < 0.01). For T2D, we detected one locus adjacent to HNF1B. Conclusions We found polygenic overlap between PCA predisposition and blood lipids, in particular LDL and TG, and identified 17 pleiotropic gene loci between PCA and LDL, and PCA and TG, respectively. These findings provide novel pathobiological insights and may have implications for trials using targeting lipid-lowering agents in a prevention or cancer setting.
Resumo:
This paper presents a detailed simulation model of a Naval coastal patrol vessel. The vessel described is a 50m long, fast monohull coastal patrol vessel. The paper describes the complete model and its implementation in Matlab-Simulink. In order to promote the use of this model, the Simulink files are openly available through a website.
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
Limited studies have examined the associations between air pollutants [particles with diameters of 10um or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2)] and fasting blood glucose (FBG). We collected data for 27,685 participants who were followed during 2006 and 2008. Generalized Estimating Equation models were used to examine the effects of air pollutants on FBG while controlling for potential confounders. We found that increased exposure to NO2, SO2 and PM10 was significantly associated with increased FBG levels in single pollutant models (p<0.001). For exposure to 4 days’ average of concentrations, a 100 µg/m3 increase in SO2, NO2, and PM10 was associated with 0.17 mmol/L (95%CI: 0.15–0.19), 0.53 mmol/L (95%CI: 0.42–0.65), and 0.11 mmol/L (95%CI: 0.07–0.15) increase in FBG, respectively. In the multi-pollutant models, the effects of SO2 were enhanced, while the effects of NO2 and PM10 were alleviated. The effects of air pollutants on FBG were stronger in female, elderly, and overweight people than in male, young and underweight people. In conclusion, the findings suggest that air pollution increases the levels of FBG. Vulnerable people should pay more attention on highly polluted days to prevent air pollution-related health issues.
Resumo:
Objective: To describe patient participation and clinical performance in a colorectal cancer (CRC) screening program utilising faecal occult blood test (FOBT). Methods: A community-based intervention was conducted in a small, rural community in north Queensland, 2000/01. One of two FOBT kits – guaiac (Hemoccult-ll) or immunochemical (Inform) – was assigned by general practice and mailed to participants (3,358 patients aged 50–74 years listed with the local practices). Results: Overall participation in FOBT screening was 36.3%. Participation was higher with the immunochemical kit than the guaiac kit (OR=1.9, 95% Cl 1.6-2.2). Women were more likely to comply with testing than men (OR=1.4, 95% Cl 1.2-1.7), and people in their 60s were less likely to participate than those 70–74 years (OR=0.8, 95% Cl 0.6-0.9). The positivity rate was higher for the immunochemical (9.5%) than the guaiac (3.9%) test (χ2=9.2, p=0.002), with positive predictive values for cancer or adenoma of advanced pathology of 37.8% (95% Cl 28.1–48.6) for !nform and 40.0% (95% Cl 16.8–68.7) for Hemoccult-ll. Colonoscopy follow-up was 94.8% with a medical complication rate of 2–3%. Conclusions: An immunochemical FOBT enhanced participation. Higher positivity rates for this kit did not translate into higher false-positive rates, and both test types resulted in a high yield of neoplasia. Implications: In addition to type of FOBT, the ultimate success of a population-based screening program for CRC using FOBT will depend on appropriate education of health professionals and the public as well as significant investment in medical infrastructure for colonoscopy follow-up.
Resumo:
People can be motivated to carryout behaviours which contribute to improvement of quality of life for reasons driven by cultural norms. There is a common perception that people within a cultural cluster, particularly one with a common language such as English, will exhibit similar consumer behaviours. However there is an emerging field of research investigating intra-cultural differences in marketing that challenges this perception. In particular, the role of peers and norms as drivers of altruistic behaviours that benefit society may differ between these countries. Altruism is an important motivation for pro-social behaviours such as blood donation, water conservation and peer counselling for health problems. Understanding the social influences for these behaviours assists marketers to develop programs that meet the needs of donors and potential donors. An ongoing foundation of altruistic consumers is essential for delivering services that improve quality of life for people. Without blood donors, there would be no blood products for cancer sufferers or accident victims, without a sufficient water supply the quality of life for residents would be compromised and without breastfeeding peer counselling, new mothers and their babies would have reduced quality of life. This chapter reports the findings of two online surveys with Scottish and Australian blood donors and demonstrates differences in the way social norms influence donation behaviour, and importantly different impacts of cultural factors in the two populations.
Resumo:
Red blood cells (RBCs) are the most common type of blood cells in the blood and 99% of the blood cells are RBCs. During the circulation of blood in the cardiovascular network, RBCs squeeze through the tiny blood vessels (capillaries). They exhibit various types of motions and deformed shapes, when flowing through these capillaries with diameters varying between 5 10 µm. RBCs occupy about 45 % of the whole blood volume and the interaction between the RBCs directly influences on the motion and the deformation of the RBCs. However, most of the previous numerical studies have explored the motion and deformation of a single RBC when the interaction between RBCs has been neglected. In this study, motion and deformation of two 2D (two-dimensional) RBCs in capillaries are comprehensively explored using a coupled smoothed particle hydrodynamics (SPH) and discrete element method (DEM) model. In order to clearly model the interactions between RBCs, only two RBCs are considered in this study even though blood with RBCs is continuously flowing through the blood vessels. A spring network based on the DEM is employed to model the viscoelastic membrane of the RBC while the inside and outside fluid of RBC is modelled by SPH. The effect of the initial distance between two RBCs, membrane bending stiffness (Kb) of one RBC and undeformed diameter of one RBC on the motion and deformation of both RBCs in a uniform capillary is studied. Finally, the deformation behavior of two RBCs in a stenosed capillary is also examined. Simulation results reveal that the interaction between RBCs has significant influence on their motion and deformation.
Resumo:
This thesis developed an advanced computational model to investigate the motion and deformation properties of red blood cells in capillaries. The novel model is based on the meshfree particle methods and is capable of modelling the large deformation of red blood cells moving through blood vessels. The developed model was employed to simulate the deformation behaviour of healthy and malaria infected red blood cells as well as the motion of red blood cells in stenosed capillaries.
Resumo:
Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P<1.09 × 10−9) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N=1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.
Resumo:
We determined the association of cord blood 25-hydroxyvitamin D [25(OH)D] with birth weight and the risk of small for gestational age (SGA). As part of the China-Anhui Birth Cohort (C-ABC) study, we measured cord blood levels of 25(OH)D in 1491 neonates in Hefei, China. The data on maternal sociodemographic characteristics, health status, lifestyle, birth outcomes were prospectively collected. Multiple regression models were used to estimate the association of 25(OH)D levels with birth weight and the risk of SGA. Compared with neonates in the lowest decile of cord blood 25(OH)D levels, neonates in four deciles (the fourth, fifth, sixth and seventh deciles) had significantly increased birth weight and decreased risk of SGA. Multiple linear regression models showed that per 10 nmol/L increase in cord blood 25(OH)D, birth weight increased by 61.0 g (95% CI: 31.9, 89.9) at concentrations less than 40 nmol/L, and then decreased by 68.5 g (95% CI: −110.5, −26.6) at concentrations from 40 to 70 nmol/L. This study provides the first epidemiological evidence that there was an inverted U shaped relationship between neonatal vitamin D status and fetal growth, and the risk of SGA reduced at moderate concentration.
Resumo:
Objective To examine the combined effects of physical activity and weight status on blood pressure (BP) in preschool-aged children. Study design The sample included 733 preschool-aged children (49% female). Physical activity was objectively assessed on 7 consecutive days by accelerometry. Children were categorized as sufficiently active if they met the recommendation of at least 60 minutes daily of moderate-to-vigorous physical activity (MVPA). Body mass index was used to categorize children as nonoverweight or overweight/obese, according to the International Obesity Task Force benchmarks. BP was measured using an automated BP monitor and categorized as elevated or normal using BP percentile-based cut-points for age, sex, and height. Results The prevalence of elevated systolic BP (SBP) and diastolic BP was 7.7% and 3.0%, respectively. The prevalence of overweight/obese was 32%, and about 15% of children did not accomplish the recommended 60 minutes of daily MVPA. After controlling for age and sex, overweight/obese children who did not meet the daily MVPA recommendation were 3 times more likely (OR 3.8; CI 1.6-8.6) to have elevated SBP than nonoverweight children who met the daily MVPA recommendation. Conclusions Overweight or obese preschool-aged children with insufficient levels of MVPA are at significantly greater risk for elevated SBP than their nonoverweight and sufficiently active counterparts.
Resumo:
Dietary nitrate (NO3−) supplementation with beetroot juice (BR) over 4–6 days has been shown to reduce the O2 cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic NO3− supplementation on resting blood pressure (BP) and the physiological responses to moderate-intensity exercise and ramp incremental cycle exercise in eight healthy subjects. Following baseline tests, the subjects were assigned in a balanced crossover design to receive BR (0.5 l/day; 5.2 mmol of NO3−/day) and placebo (PL; 0.5 l/day low-calorie juice cordial) treatments. The exercise protocol (two moderate-intensity step tests followed by a ramp test) was repeated 2.5 h following first ingestion (0.5 liter) and after 5 and 15 days of BR and PL. Plasma nitrite concentration (baseline: 454 ± 81 nM) was significantly elevated (+39% at 2.5 h postingestion; +25% at 5 days; +46% at 15 days; P < 0.05) and systolic and diastolic BP (baseline: 127 ± 6 and 72 ± 5 mmHg, respectively) were reduced by ∼4% throughout the BR supplementation period (P < 0.05). Compared with PL, the steady-state V̇o2 during moderate exercise was reduced by ∼4% after 2.5 h and remained similarly reduced after 5 and 15 days of BR (P < 0.05). The ramp test peak power and the work rate at the gas exchange threshold (baseline: 322 ± 67 W and 89 ± 15 W, respectively) were elevated after 15 days of BR (331 ± 68 W and 105 ± 28 W; P < 0.05) but not PL (323 ± 68 W and 84 ± 18 W). These results indicate that dietary NO3− supplementation acutely reduces BP and the O2 cost of submaximal exercise and that these effects are maintained for at least 15 days if supplementation is continued.