346 resultados para Night vision devices
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways from payment systems to assisting the lives of elderly or disabled people. Security threats for these devices become increasingly dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level. Therefore, third-party developers have the opportunity to develop kernel-based low-level security tools which is not normal for smartphone platforms. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS for example, holding the greatest market share among all smartphone OSs, was closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners� privacy. In this work, we present our current results in analyzing the security of Android smartphones with a focus on its Linux side. Our results are not limited to Android, they are also applicable to Linux-based smartphones such as OpenMoko Neo FreeRunner. Our contribution in this work is three-fold. First, we analyze android framework and the Linux-kernel to check security functionalities. We survey wellaccepted security mechanisms and tools which can increase device security. We provide descriptions on how to adopt these security tools on Android kernel, and provide their overhead analysis in terms of resource usage. As open smartphones are released and may increase their market share similar to Symbian, they may attract attention of malware writers. Therefore, our second contribution focuses on malware detection techniques at the kernel level. We test applicability of existing signature and intrusion detection methods in Android environment. We focus on monitoring events on the kernel; that is, identifying critical kernel, log file, file system and network activity events, and devising efficient mechanisms to monitor them in a resource limited environment. Our third contribution involves initial results of our malware detection mechanism basing on static function call analysis. We identified approximately 105 Executable and Linking Format (ELF) executables installed to the Linux side of Android. We perform a statistical analysis on the function calls used by these applications. The results of the analysis can be compared to newly installed applications for detecting significant differences. Additionally, certain function calls indicate malicious activity. Therefore, we present a simple decision tree for deciding the suspiciousness of the corresponding application. Our results present a first step towards detecting malicious applications on Android-based devices.
Resumo:
None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.
Resumo:
Many older people have difficulties using modern consumer products due to increased product complexity both in terms of functionality and interface design. Previous research has shown that older people have more difficulty in using complex devices intuitively when compared to the younger. Furthermore, increased life expectancy and a falling birth rate have been catalysts for changes in world demographics over the past two decades. This trend also suggests a proportional increase of older people in the work-force. This realisation has led to research on the effective use of technology by older populations in an effort to engage them more productively and to assist them in leading independent lives. Ironically, not enough attention has been paid to the development of interaction design strategies that would actually enable older users to better exploit new technologies. Previous research suggests that if products are designed to reflect people's prior knowledge, they will appear intuitive to use. Since intuitive interfaces utilise domain-specific prior knowledge of users, they require minimal learning for effective interaction. However, older people are very diverse in their capabilities and domain-specific prior knowledge. In addition, ageing also slows down the process of acquiring new knowledge. Keeping these suggestions and limitations in view, the aim of this study was set to investigate possible approaches to developing interfaces that facilitate their intuitive use by older people. In this quest to develop intuitive interfaces for older people, two experiments were conducted that systematically investigated redundancy (the use of both text and icons) in interface design, complexity of interface structure (nested versus flat), and personal user factors such as cognitive abilities, perceived self-efficacy and technology anxiety. All of these factors could interfere with intuitive use. The results from the first experiment suggest that, contrary to what was hypothesised, older people (65+ years) completed the tasks on the text only based interface design faster than on the redundant interface design. The outcome of the second experiment showed that, as expected, older people took more time on a nested interface. However, they did not make significantly more errors compared with younger age groups. Contrary to what was expected, older age groups also did better under anxious conditions. The findings of this study also suggest that older age groups are more heterogeneous in their capabilities and their intuitive use of contemporary technological devices is mediated more by domain-specific technology prior knowledge and by their cognitive abilities, than chronological age. This makes it extremely difficult to develop product interfaces that are entirely intuitive to use. However, by keeping in view the cognitive limitations of older people when interfaces are developed, and using simple text-based interfaces with flat interface structure, would help them intuitively learn and use complex technological products successfully during early encounter with a product. These findings indicate that it might be more pragmatic if interfaces are designed for intuitive learning rather than for intuitive use. Based on this research and the existing literature, a model for adaptable interface design as a strategy for developing intuitively learnable product interfaces was proposed. An adaptable interface can initially use a simple text only interface to help older users to learn and successfully use the new system. Over time, this can be progressively changed to a symbols-based nested interface for more efficient and intuitive use.
Resumo:
This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.
Resumo:
In this work, we present an investigation on Pt/graphene/GaN devices for hydrogen gas sensing applications. The graphene layer was deposited on GaN substrate using a chemical vapour deposition (CVD) technique and was characterised via Raman and X-ray photoelectron spectroscopy. The current-voltage (I-V) and dynamic response of the developed devices were investigated in forward and reverse bias operation at an optimum temperature of 160°C. Voltage shifts of 661.1 and 484.9 mV were recorded towards 1% hydrogen at forward and reverse constant bias current of 1 mA, respectively.
Resumo:
A key issue in the field of inclusive design is the ability to provide designers with an understanding of people's range of capabilities. Since it is not feasible to assess product interactions with a large sample, this paper assesses a range of proxy measures of design-relevant capabilities. It describes a study that was conducted to identify which measures provide the best prediction of people's abilities to use a range of products. A detailed investigation with 100 respondents aged 50-80 years was undertaken to examine how they manage typical household products. Predictor variables included self-report and performance measures across a variety of capabilities (vision, hearing, dexterity and cognitive function), component activities used in product interactions (e.g. using a remote control, touch screen) and psychological characteristics (e.g. self-efficacy, confidence with using electronic devices). Results showed, as expected, a higher prevalence of visual, hearing, dexterity, cognitive and product interaction difficulties in the 65-80 age group. Regression analyses showed that, in addition to age, performance measures of vision (acuity, contrast sensitivity) and hearing (hearing threshold) and self-report and performance measures of component activities are strong predictors of successful product interactions. These findings will guide the choice of measures to be used in a subsequent national survey of design-relevant capabilities, which will lead to the creation of a capability database. This will be converted into a tool for designers to understand the implications of their design decisions, so that they can design products in a more inclusive way.
Resumo:
In this paper we demonstrate passive vision-based localization in environments more than two orders of magnitude darker than the current benchmark using a 100 webcam and a 500 camera. Our approach uses the camera’s maximum exposure duration and sensor gain to achieve appropriately exposed images even in unlit night-time environments, albeit with extreme levels of motion blur. Using the SeqSLAM algorithm, we first evaluate the effect of variable motion blur caused by simulated exposures of 132 ms to 10000 ms duration on localization performance. We then use actual long exposure camera datasets to demonstrate day-night localization in two different environments. Finally we perform a statistical analysis that compares the baseline performance of matching unprocessed greyscale images to using patch normalization and local neighbourhood normalization – the two key SeqSLAM components. Our results and analysis show for the first time why the SeqSLAM algorithm is effective, and demonstrate the potential for cheap camera-based localization systems that function across extreme perceptual change.
Resumo:
This work presents a collision avoidance approach based on omnidirectional cameras that does not require the estimation of range between two platforms to resolve a collision encounter. Our method achieves minimum separation between the two vehicles involved by maximising the view-angle given by the omnidirectional sensor. Only visual information is used to achieve avoidance under a bearing- only visual servoing approach. We provide theoretical problem formulation, as well as results from real flights using small quadrotors
Resumo:
Aim To provide an overview of key governance matters relating to medical device trials and practical advice for nurses wishing to initiate or lead them. Background Medical device trials, which are formal research studies that examine the benefits and risks of therapeutic, non-drug treatment medical devices, have traditionally been the purview of physicians and scientists. The role of nurses in medical device trials historically has been as data collectors or co-ordinators rather than as principal investigators. Nurses more recently play an increasing role in initiating and leading medical device trials. Review Methods A review article of nurse-led trials of medical devices. Discussion Central to the quality and safety of all clinical trials is adherence to the International Conference on Harmonization Guidelines for Good Clinical Practice, which is the internationally-agreed standard for the ethically- and scientifically-sound design, conduct and monitoring of a medical device trial, as well as the analysis, reporting and verification of the data derived from that trial. Key considerations include the class of the medical device, type of medical device trial, regulatory status of the device, implementation of standard operating procedures, obligations of the trial sponsor, indemnity of relevant parties, scrutiny of the trial conduct, trial registration, and reporting and publication of the results. Conclusion Nurse-led trials of medical devices are demanding but rewarding research enterprises. As nursing practice and research increasingly embrace technical interventions, it is vital that nurse researchers contemplating such trials understand and implement the principles of Good Clinical Practice to protect both study participants and the research team.
Resumo:
Emotions play a significant role in people’s lives, including interactions with portable devices. The research aimed to understand the evolving emotional experience between people and portable interactive devices (PIDs). Activity Theory was the theoretical framework used to contextualise the research approach and findings. Two longitudinal experiments were conducted investigating emotional experiences with PIDs over six months. Experiment 1 focused on media / entertainment PIDs while Experiment 2 focused on medical / health PIDs. Mixed research methods consisting of diaries, interviews and codiscovery sessions were used to collect data. Results identified that more social interactions were experienced with media PIDs than medical PIDs. Different Task Categories, and their emotional responses, were also revealed including Features, Functional, Mediation and Auxiliary Categories. Functional and Mediation categories were characterised as overall positive while Features and Auxiliary Categories were characterised as overall negative. Further, the consequences of Negative Personal and Social interactions on the overall emotional experience were determined. For media PIDs, Negative Social experiences adversely impacted the evolving emotional experience. For medical PIDs, both Negative Social and Negative Personal experiences adversely impacted the evolving emotional experience. As a result of the findings the Designing for Evolving Emotional Experience framework was developed, outlining principles to promote positive, and avoid negative, emotional experiences with PIDs. Contributions to knowledge from the research include methodological contributions, advancing understanding of emotional experiences with PIDs, expanding the taxonomy of emotional interactions with PIDs and broadening emotion design theory and principles. The thesis concludes with an outline of implications to design research, design and related fields, future research potentials, as well as the positive contributions to designing for meaningful and enjoyable experiences in everyday life.
Resumo:
The novel manuscript Fragrance of Night is a crime novel set in Indonesia. Raymond Chan, struggling to deal with the death of his Australian wife, returns to his country of birth, Indonesia. Ostensibly he returns to attend his cousin Lee’s wedding but he is also in search of some meaning in his life. He is drawn into a local murder mystery, and with the help of a young, Javanese policeman, he is soon investigating suspects and motives. Raymond finds himself becoming increasingly enamoured with the main suspect, Lani, but ultimately, once the murder mystery is solved, Raymond loses her. The exegesis examines crime fiction as a genre, in particular Indonesian crime fiction and notions of postcolonialism and hybridisation. Within this broader context, it analyses works by Indonesian crime fiction writer S Mara Gd, postcolonial crime fiction and novels written in English but set in ‘exotic’ locale. The formulation of my novel Fragrance of Night was informed by the examination of the machinations of hybridised crime fiction and the more general rules of the crime fiction genre.
Resumo:
It is well known that a broad range of ocular anatomical and physiological parameters undergo significant diurnal variation. However, the natural diurnal variations that occur in the length of the human eye (axial length) and their underlying causes have been less well studied. Improvements in optical methods for the measurement of ocular biometrics now allow more precise and comprehensive measurements of axial length to be performed than has previously been possible. Research from animal models also suggests a link between diurnal axial length variations and longer term myopic eye growth, and that retinal image defocus can disrupt these diurnal rhythms in axial length. This research programme has examined the diurnal variations in axial length in young normal eyes, the contributing components and the influence of optical stimuli on these changes. In the first experiment, the normal pattern and consistency of the diurnal variations in axial length were examined at 10 different times (5 measurements each day, at ~ 3-hour intervals from ~ 9 am to ~ 9 pm) over 2 consecutive days on 30 young adult subjects (15 myopes, 15 emmetropes). Additionally, variations in a range of other ocular biometric measurements such as choroidal thickness, intraocular pressure, and other ocular biometrics were also explored as potential factors that may be associated with the observed variations in axial length. To investigate the potential influence of refractive error on diurnal axial length variations, the differences in the magnitude and pattern of diurnal variations in axial length between the myopic and emmetropic subjects were examined. Axial length underwent significant diurnal variation that was consistently observed over the 2 consecutive days of measurements, with the longest axial length typically occurring during the day, and the shortest at night. Significant diurnal variations were also observed in choroidal thickness, IOP and other ocular biometrics (such as central corneal thickness, anterior chamber depth and vitreous chamber depth) of the eye. Diurnal variations in vitreous chamber depth, IOP (positive associations) and choroidal thickness (negative association) were all significantly correlated with the diurnal changes in axial length. Choroidal thickness was found to fluctuate approximately in antiphase to the axial length changes, with the average timing of the longest axial length coinciding with the thinnest choroid and vice versa. There were no significant differences in the ocular diurnal variations associated with refractive error. Given that the diurnal changes in axial length could be associated with the changes in the eye’s optical quality, whether the optical quality of the eye also undergoes diurnal variation in the same cohort of young adult myopes and emmetropes over 2 consecutive days was also examined. Significant diurnal variations were observed only in the best sphere refraction (power vector M) and in the spherical aberration of the eye over two consecutive days of testing. The changes in the eyes lower and higher order ocular optics were not significantly associated with the diurnal variations in axial length and the other measured ocular biometric parameters. No significant differences were observed in the magnitude and timing of diurnal variations in lower-order and higher-order optics associated with refractive error. Since the small natural fluctuations in the eye’s optical quality did not appear to be sufficient to influence the natural diurnal fluctuations in ocular biometric parameters, in the next experiment, the influence of monocular myopic defocus (+1.50 DS) upon the normal diurnal variations in axial length and choroidal thickness of young adult emmetropic human subjects (n=13) imposed over a 12 hour period was examined. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular myopic defocus (Day 2, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined. Significant diurnal variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days. The introduction of monocular myopic defocus led to significant reductions in the mean amplitude of diurnal change, and phase shifts in the peak timing of the diurnal rhythms in axial length and choroidal thickness. These defocus induced changes were found to be transient in nature and returned to normal the day following removal of the defocus. To further investigate the influence of optical stimuli on human diurnal rhythms, in the final experiment, the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness was examined in young adult emmetropic subjects (n=15). Similar to the previous experiment, the natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, -2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined over three consecutive days. Both axial length and choroidal thickness underwent significant diurnal variations on each of the three days. The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of diurnal change, but no change in the peak timing of diurnal rhythms in both parameters. The ocular changes associated with hyperopic defocus returned to normal, the day following removal of the defocus. This research has shown that axial length undergoes significant diurnal variation in young adult human eyes, and has shown that the natural diurnal variations in choroidal thickness and IOP are significantly associated, and may underlie these diurnal fluctuations in axial length. This work also demonstrated for the first time that exposing young human eyes to monocular myopic and hyperopic defocus leads to a significant disruption in the normal diurnal rhythms of axial length and choroidal thickness. These changes in axial length with defocus may reflect underlying mechanisms in the human eye that are involved in the regulation of longer term eye growth.
Resumo:
This paper presents a mapping and navigation system for a mobile robot, which uses vision as its sole sensor modality. The system enables the robot to navigate autonomously, plan paths and avoid obstacles using a vision based topometric map of its environment. The map consists of a globally-consistent pose-graph with a local 3D point cloud attached to each of its nodes. These point clouds are used for direction independent loop closure and to dynamically generate 2D metric maps for locally optimal path planning. Using this locally semi-continuous metric space, the robot performs shortest path planning instead of following the nodes of the graph --- as is done with most other vision-only navigation approaches. The system exploits the local accuracy of visual odometry in creating local metric maps, and uses pose graph SLAM, visual appearance-based place recognition and point clouds registration to create the topometric map. The ability of the framework to sustain vision-only navigation is validated experimentally, and the system is provided as open-source software.
Resumo:
In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.
Resumo:
Cardiovascular diseases are a leading cause of death throughout the developed world. With the demand for donor hearts far exceeding the supply, a bridge-to-transplant or permanent solution is required. This is currently achieved with ventricular assist devices (VADs), which can be used to assist the left ventricle (LVAD), right ventricle (RVAD), or both ventricles simultaneously (BiVAD). Earlier generation VADs were large, volume-displacement devices designed for temporary support until a donor heart was found. The latest generation of VADs use rotary blood pump technology which improves device lifetime and the quality of life for end stage heart failure patients. VADs are connected to the heart and greater vessels of the patient through specially designed tubes called cannulae. The inflow cannulae, which supply blood to the VAD, are usually attached to the left atrium or ventricle for LVAD support, and the right atrium or ventricle for RVAD support. Few studies have characterized the haemodynamic difference between the two cannulation sites, particularly with respect to rotary RVAD support. Inflow cannulae are usually made of metal or a semi-rigid polymer to prevent collapse with negative pressures. However suction, and subsequent collapse, of the cannulated heart chamber can be a frequent occurrence, particularly with the relatively preload insensitive rotary blood pumps. Suction events may be associated with endocardial damage, pump flow stoppages and ventricular arrhythmias. While several VAD control strategies are under development, these usually rely on potentially inaccurate sensors or somewhat unreliable inferred data to estimate preload. Fixation of the inflow cannula is usually achieved through suturing the cannula, often via a felt sewing ring, to the cannulated chamber. This technique extends the time on cardiopulmonary bypass which is associated with several postoperative complications. The overall objective of this thesis was to improve the placement and design of rotary LVAD and RVAD inflow cannulae to achieve enhanced haemodynamic performance, reduced incidence of suction events, reduced levels of postoperative bleeding and a faster implantation procedure. Specific objectives were: * in-vitro evaluation of LVAD and RVAD inflow cannula placement, * design and in-vitro evaluation of a passive mechanism to reduce the potential for heart chamber suction, * design and in-vitro evaluation of a novel suture-less cannula fixation device. In order to complete in-vitro evaluation of VAD inflow cannulae, a mock circulation loop (MCL) was developed to accurately replicate the haemodynamics in the human systemic and pulmonary circulations. Validation of the MCL’s haemodynamic performance, including the form and magnitude of pressure, flow and volume traces was completed through comparisons of patient data and the literature. The MCL was capable of reproducing almost any healthy or pathological condition, and provided a useful tool to evaluate VAD cannulation and other cardiovascular devices. The MCL was used to evaluate inflow cannula placement for rotary VAD support. Left and right atrial and ventricular cannulation sites were evaluated under conditions of mild and severe heart failure. With a view to long term LVAD support in the severe left heart failure condition, left ventricular inflow cannulation was preferred due to improved LVAD efficiency and reduced potential for thrombus formation. In the mild left heart failure condition, left atrial cannulation was preferred to provide an improved platform for myocardial recovery. Similar trends were observed with RVAD support, however to a lesser degree due to a smaller difference in right atrial and ventricular pressures. A compliant inflow cannula to prevent suction events was then developed and evaluated in the MCL. As rotary LVAD or RVAD preload was reduced, suction events occurred in all instances with a rigid inflow cannula. Addition of the compliant segment eliminated suction events in all instances. This was due to passive restriction of the compliant segment as preload dropped, thus increasing the VAD circuit resistance and decreasing the VAD flow rate. Therefore, the compliant inflow cannula acted as a passive flow control / anti-suction system in LVAD and RVAD support. A novel suture-less inflow cannula fixation device was then developed to reduce implantation time and postoperative bleeding. The fixation device was evaluated for LVAD and RVAD support in cadaveric animal and human hearts attached to a MCL. LVAD inflow cannulation was achieved in under two minutes with the suture-less fixation device. No leakage through the suture-less fixation device – myocardial interface was noted. Continued development and in-vivo evaluation of this device may result in an improved inflow cannulation technique with the potential for off-bypass insertion. Continued development of this research, in particular the compliant inflow cannula and suture-less inflow cannulation device, will result in improved postoperative outcomes, life span and quality of life for end-stage heart failure patients.