242 resultados para Interfacial tension


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) sheets have established a strong position as an effective method for innovative structural rehabilitation. However, the use of externally bonded CFRP in the repair and rehabilitation of steel structures is a relatively new technique that has the potential to improve the way structures are repaired. An important step toward understanding bond behaviour is to have an estimation of local bond stress versus slip relationship. The current study aims to establish the bond-slip model for CFRP sheets bonded to steel plate. To obtain the shear stress versus slippage relationship, a series of double strap tension type bond tests were conducted. This paper reports on the findings of the experimental studies. The strain and stress distributions measured in the specimens for two different bond lengths. The results show a preliminary bi-linear bond-slip model may be adopted for CFRP sheet bonded with steel plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To evaluate carbonic anhydrase (CA) IX as a surrogate marker of hypoxia and investigate the prognostic significance of different patterns of expression in non-small-cell lung cancer (NSCLC). Methods Standard immunohistochemical techniques were used to study CA IX expression in 175 resected NSCLC tumors. CA IX expression was determined by Western blotting in A549 cell lines grown under normoxic and hypoxic conditions. Measurements from microvessels to CA IX positivity were obtained. Results CA IX immunostaining was detected in 81.8% of patients. Membranous (m) (P = .005), cytoplasmic (c) (P = .018), and stromal (P < .001) CA IX expression correlated with the extent of tumor necrosis (TN). The mean distance from vascular endothelium to the start of tumor cell positivity was 90 μm, which equates to an oxygen pressure of 5.77 mmHg. The distance to blood vessels from individual tumor cells or tumor cell clusters was greater if they expressed mCA IX than if they did not (P < .001). Hypoxic exposure of A549 cells for 16 hours enhanced CAIX expression in the nuclear and cytosolic extracts. Perinuclear (p) CA IX (P = .035) was associated with a poor prognosis. In multivariate analysis, pCA IX (P = .004), stage (P = .001), platelet count (P = .011), sex (P = .027), and TN (P = .035) were independent poor prognostic factors. Conclusion These results add weight to the contention that mCA IX is a marker of tumor cell hypoxia. The absence of CA IX staining close to microvessels suggests that these vessels are functionally active. pCA IX expression is representative of an aggressive phenotype. © 2003 by American Society of Clinical Oncology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Criminal law scholarship is enjoying a renaissance in normative theory, evident in a growing list of publications from leading scholars that attempt to elucidate a set of principles on which criminalisation and criminal law might — indeed should — be based. This development has been less marked in Australia, where a stream of criminologically influenced criminal law scholarship, teaching and practice has emerged over nearly three decades. There are certain tensions between this predominantly contextual, process-oriented and criminological tradition that has emerged in Australia, characterised by a critical approach to the search for ‘general principles’ of the criminal law, and the more recent revival of interest in developing a set of principles on which a ‘normative theory of criminal law’ might be founded. Aspects of this tension will be detailed through examination of recent examples of criminalisation in New South Wales that are broadly representative of trends across all Australian urisdictions. The article will then reflect on the links between these particular features of criminalisation and attempts to develop a ‘normative theory’ of criminalisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Stem cells are regularly cultured under normoxic conditions. However, the physiological oxygen tension in the stem cell niche is known to be as low as 1-2% oxygen, suggesting that hypoxia has a distinct impact on stem cell maintenance. Periodontal ligament cells (PDLCs) and dental pulp cells (DPCs) are attractive candidates in dental tissue regeneration. It is of great interest to know whether hypoxia plays a role in maintaining the stemness and differentiation capacity of PDLCs and DPCs. Methods. PDLCs and DPCs were cultured either in normoxia (20% O2) or hypoxia (2% O2). Cell viability assays were performed and the expressions of pluripotency markers (Oct-4, Sox2, and c-Myc) were detected by qRT-PCR and western blotting. Mineralization, glycosaminoglycan (GAG) deposition, and lipid droplets formation were assessed by Alizarin red S, Safranin O, and Oil red O staining, respectively. Results. Hypoxia did not show negative effects on the proliferation of PDLCs and DPCs. The pluripotency markers and differentiation potentials of PDLCs and DPCs significantly increased in response to hypoxic environment. Conclusions. Our findings suggest that hypoxia plays an important role in maintaining the stemness and differentiation capacity of PDLCs and DPCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social media platforms are of interest to interactive entertainment companies for a number of reasons. They can operate as a platform for deploying games, as a tool for communicating with customers and potential customers, and can provide analytics on how players utilize the; game providing immediate feedback on design decisions and changes. However, as ongoing research with Australian developer Halfbrick, creators of $2 , demonstrates, the use of these platforms is not universally seen as a positive. The incorporation of Big Data into already innovative development practices has the potential to cause tension between designers, whilst the platform also challenges the traditional business model, relying on micro-transactions rather than an up-front payment and a substantial shift in design philosophy to take advantage of the social aspects of platforms such as Facebook.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Material yielding is typically modeled either by plastic zone or plastic hinge methods under the context of geometric and material nonlinear finite element methods. In fire analysis of steel structures, the plastic zone method is widely used, but it requires extensively more computational efforts. The objective of this paper is to develop the nonlinear material model allowing for interaction of both axial force and bending moment, which relies on the plastic hinge method to achieve numerical efficiency and reduce computational effort. The biggest advantage of the plastic-hinge approach is its computational efficiency and easy verification by the design code formulae of the axial force–moment interaction yield criterion for beam–column members. Further, the method is reliable and robust when used in analysis of practical and large structures. In order to allow for the effect of catenary action, axial thermal expansion is considered in the axial restraint equations. The yield function for material yielding incorporated in the stiffness formulation, which allows for both axial force and bending moment effects, is more accurate and rational to predict the behaviour of the frames under fire. In the present fire analysis, the mechanical properties at elevated temperatures follow mainly the Eurocode 3 [Design of steel structures, Part 1.2: Structural fire design. European Committee for Standisation; 2003]. Example of a tension member at a steady state heating condition is modeled to verify the proposed spring formulation and to compare with results by others. The behaviour of a heated member in a highly redundant structure is also studied by the present approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benzodiazepines are widely prescribed to manage sleep disorders, anxiety and muscular tension. While providing short-term relief, continued use induces tolerance and withdrawal, and in older users, increases the risk of falls. However, long-term prescription remains common, and effective interventions are not widely available. This study developed a self-managed cognitive behaviour therapy package for cessation of benzodiazepine use delivered to participants via mail (M-CBT) and trialled its effectiveness as an adjunct to a general practitioner (GP)-managed dose reduction schedule. In the pilot trial, participants were randomly assigned to GP management with immediate or delayed M-CBT. Significant recruitment and engagement problems were experienced, and only three participants were allocated to each condition. After immediate M-CBT, two participants ceased use, while none receiving delayed treatment reduced daily intake by more than 50%. Across the sample, doses at 12 months remained significantly lower than baseline, and qualitative feedback from participants was positive. While M-CBT may have promise, improved engagement of GPs and participants is needed for this approach to substantially impact on community-wide benzodiazepine use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene has been reported with record-breaking properties which have opened up huge potential applications. A considerable research has been devoted to manipulate or modify the properties of graphene to target a more smart nanoscale device. Graphene and carbon nanotube hybrid structure (GNHS) is one of the promising graphene derivates, while their mechanical properties have been rarely discussed in literature. Therefore, such a studied is conducted in this paper basing on the large-scale molecular dynamics simulation. The target GNHS is constructed by considering two separate graphene layers that being connected by single-wall carbon nanotubes (SWCNTs) according to the experimental observations. It is found that the GNHSs exhibit a much lower yield strength, Young’s modulus, and earlier yielding comparing with a bilayer graphene sheet. Fracture of studied GNHSs is found to fracture located at the connecting region between carbon nanotubes (CNTs) and graphene. After failure, monatomic chains are normally observed at the front of the failure region, and the two graphene layers at the failure region without connecting CNTs will adhere to each other, generating a bilayer graphene sheet scheme (with a layer distance about 3.4 Å). This study will enrich the current understanding of the mechanical performance of GNHS, which will guide the design of GNHS and shed lights on its various applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploring thermal transport in graphene-polymer nanocomposite is significant to its applications with better thermal properties. Interfacial thermal conductance between graphene and polymer matrix plays a critical role in the improvement of thermal conductivity of graphene-polymer nanocomposite. Unfortunately, it is still challenging to understand the interfacial thermal transport between graphene nanofiller and polymer matrix at small material length scale. To this end, using non-equilibrium molecular dynamics simulations, we investigate the interfacial thermal conductance of graphene-polyethylene (PE) nanocomposite. The influence of functionalization with hydrocarbon chains on the interfacial thermal conductance of graphene-polymer nanocomposites was studied, taking into account of the effects of model size and thermal conductivity of graphene. An analytical model is also used to calculate the thermal conductivity of nanocomposite. The results are considered to contribute to development of new graphene-polymer nanocomposites with tailored thermal properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this essay, we outline an emerging form of public intellectualism in the humanities sector of Australian higher education. We argue that debates over public intellectualism and its relation to the academy in Australia have largely been focused on the tension between polemics and politics. These debates have also tended to ignore or overlook policy drivers within the sector and alternative or new media sites of public intellectualism. Shifting the focus towards policy drivers in the knowledge economy—such as knowledge transfer and third-stream funding—and understanding the nature of the university as a public sphere in itself reveals a new economy of the public intellectual as a professional knowledge worker. This new economy, we argue, may well render obsolete many of the previous debates over public intellectualism in the humanities. However, we anticipate that it will generate new debates over the relationship between the individual and the institutional, and between the concepts of public profile and public role—debates that will affect, in particular, early career academics who are the inheritors of this new economy of the public intellectual.